Advertisement

Macromolecular Research

, Volume 25, Issue 6, pp 500–503 | Cite as

Cationic comb-type copolymer promotes DNA assembly on gold nanoparticles while enhancing particle dispersibility

  • Hiroki Sato
  • Naohiko Shimada
  • Atsushi MaruyamaEmail author
Communication
  • 94 Downloads

Abstract

We previously reported that graft copolymers comprised of a cationic backbone and abundant grafts of hydrophilic dextran formed soluble interpolyelectrolyte complexes with anionic biopolymers and facilitated self-assembly and folding of the biopolymers, such as duplex formation of DNA and helical folding of a peptide. In this study, effects of the cationic graft copolymers on assembly of gold nanoparticles (AuNPs) and that of DNA on AuNPs were explored. While polylysine homopolymer caused aggregation of AuNP, the graft copolymer did not induce the aggregation as monitored by adsorption spectra. The highly-grafted copolymer at nano molar concentration was capable of suppressing AuNP aggregation induced by 3 M NaCl. Moreover, the copolymer did not cause aggregation of AuNPs whose surface were modified with oligonucleotides (ODN) having highly negative charges. In the presence of copolymer, melting temperature of DNA duplex formed between AuNP-ODN and its complementary ODN was increased about 10 °C, indicating that the copolymer enhanced stability of DNA duplex on the surface of AuNPs. It was concluded that the copolymer selectively promoted assembly of negatively charged DNA but inhibited aggregation of negatively charged AuNPs.

Keywords

cationic comb-type copolymer gold nanoparticle DNA inter polyelectrolyte complex 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Supplementary material

13233_2017_5112_MOESM1_ESM.pdf (473 kb)
Experimental

References

  1. (1).
    D. A. Giljohann, D. S. Seferos, W. L. Daniel, M. D. Massich, P. C. Patel, and C. A. Mirkin, Angew. Chem. Int. Ed., 49, 3280 (2010).CrossRefGoogle Scholar
  2. (2).
    M. C. M. Daniel and D. Astruc, Chem. Rev., 104, 293 (2004).CrossRefGoogle Scholar
  3. (3).
    K. Zagorovsky and W. C. W. Chan, Angew. Chem. Int. Ed., 52, 3168 (2013).CrossRefGoogle Scholar
  4. (4).
    S. K. Ghosh and T. Pal, Chem. Rev., 107, 4797 (2007).CrossRefGoogle Scholar
  5. (5).
    J. J. Storhoff, A. A. Lazarides, R. C. Mucic, C. A. Mirkin, R. L. Letsinger, and G. C. Schatz, J. Am. Chem. Soc., 122, 4640 (2000).CrossRefGoogle Scholar
  6. (6).
    G. Frens, Nat. Phys. Sci., 241, 20 (1973).CrossRefGoogle Scholar
  7. (7).
    B. V. Enustun, J. Turkevich, J. Am. Chem. Soc., 85, 3317 (1963).CrossRefGoogle Scholar
  8. (8).
    M. Zheng, F. Davidson, and X. Huang, J. Am. Chem. Soc., 125, 7790 (2003).CrossRefGoogle Scholar
  9. (9).
    K. Kusolkamabot, P. Sae-ung, N. Niamnont, K. Wongravee, M. Sukwattanasinitt, and V. P. Hoven, Langmuir, 29, 12317 (2013).CrossRefGoogle Scholar
  10. (10).
    V. A. Bloomfield, Biopolymers, 44, 269 (1997).CrossRefGoogle Scholar
  11. (11).
    A. Maruyama, H. Watanabe, A. Ferdous, M. Kato, T. Ishihara, and T. Akaike, Bioconjug. Chem., 9, 292 (1998).CrossRefGoogle Scholar
  12. (12).
    Y. I. Sato, Y. Kobayashi, T. Kamiya, H. Watanabe, T. Akaike, K. Yoshikawa, and A. Maruyama, Biomaterials, 26, 703 (2005).CrossRefGoogle Scholar
  13. (13).
    L. Wu, N. Shimada, A. Kano, and A. Maruyama, Soft Matter, 4, 744 (2008).CrossRefGoogle Scholar
  14. (14).
    H. Torigoe, A. Ferdous, H. Watanabe, T. Akaike, and A. Maruyama, J. Biol. Chem., 274, 6161 (1999).CrossRefGoogle Scholar
  15. (15).
    R. Moriyama, N. Shimada, A. Kano, and A. Maruyama, Biomaterials, 32, 2351 (2011).CrossRefGoogle Scholar
  16. (16).
    N. Shimada, H. Kinoshita, S. Tokunaga, T. Umegae, N. Kume, W. Sakamoto, and A. Maruyama, J. Control. Release, 45, 218 (2015).Google Scholar
  17. (17).
    C. Perrino, S. Lee, S. W. Choi, A. Maruyama, and N. D. Spencer, Langmuir, 24, 8850 (2008).CrossRefGoogle Scholar
  18. (18).
    W. Zhou, X. Gao, D. Liu, and X. Chen, Chem. Rev., 115, 10575 (2015).CrossRefGoogle Scholar
  19. (19).
    S. J. Tan, M. J. Campolongo, D. Luo, and W. Cheng, Nat. Nanotechnol., 6, 268 (2011).CrossRefGoogle Scholar
  20. (20).
    X. Zhang, M. R. Servos, and J. Liu, J. Am. Chem. Soc., 134, 9910 (2012).CrossRefGoogle Scholar
  21. (21).
    R. Elghanian, J. J. Storhoff, R. C. Mucic, R. L. Letsinger, and C. A. Mirkin, Science, 277, 1078 (1997).CrossRefGoogle Scholar
  22. (22).
    L. H. Tan, H. Xing, H. Chen, and Y. Lu, J. Am. Chem. Soc., 135, 17675 (2013).CrossRefGoogle Scholar
  23. (23).
    S. Song, Z. Liang, J. Zhang, L. Wang, G. Li, and C. Fan, Angew. Chem. Int. Ed., 48, 8670 (2009).CrossRefGoogle Scholar
  24. (24).
    A. Maruyama, Y. Ohnishi, H. Watanabe, H. Torigoe, A. Ferdous, and T. Akaike, Colloids Surf. B, 16, 273 (1999).CrossRefGoogle Scholar

Copyright information

© The Polymer Society of Korea and Springer Science+Business Media B.V. 2017

Authors and Affiliations

  • Hiroki Sato
    • 1
  • Naohiko Shimada
    • 1
  • Atsushi Maruyama
    • 1
    Email author
  1. 1.Department of Life Science and TechnologyTokyo Institute of TechnologyYokohamaJapan

Personalised recommendations