Advertisement

Macromolecular Research

, Volume 25, Issue 6, pp 489–495 | Cite as

Organic thin film transistor with conjugated polymers for highly sensitive gas sensors

  • Benjamin Nketia-Yawson
  • Yong-Young NohEmail author
Review

Abstract

The ease in structural modification, redesign and development of multi-functional polymer semiconductors have led to significant advances in organic electronic device applications such as organic light emitting diodes (OLED), organic photovoltaics (OPV), organic thin film transistors (OTFT), and organic sensors. In this article, we reviewed recent techniques and strategies employed toward the optimization of conjugated polymer films for high sensing performance in OTFT-based gas sensors. Significant enhancements, particularly in gas selectivity, sensitivity, detection limit, response/recovery time of OTFT-based gas sensors by polymer film morphology and thickness control, functionalization of conjugated polymers with chemical groups and the use of doped/blended inorganic or dielectric materials and conjugated polymer composites as active layers are discussed here.

Keywords

organic thin film transistors conjugated polymers gas sensors sensing mechanism morphology influence film thickness 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. (1).
    N. Chakravarthi, K. Gunasekar, W. Cho, D. X. Long, Y.-H. Kim, C. E. Song, J.-C. Lee, A. Facchetti, M. Song, Y.-Y. Noh, and S.-H. Jin, Energy Environ. Sci., 9, 2595 (2016).CrossRefGoogle Scholar
  2. (2).
    X. Guo, S. R. Puniredd, M. Baumgarten, W. Pisula, and K. Müllen, Adv. Mater., 25, 5467 (2013).CrossRefGoogle Scholar
  3. (3).
    E. K. Lee, C. H. Park, J. Lee, H. R. Lee, C. Yang, and J. H. Oh, Adv. Mater., 29, 1605282 (2017).CrossRefGoogle Scholar
  4. (4).
    H. Yan, Z. Chen, Y. Zheng, C. Newman, J. R. Quinn, F. Dötz, M. Kastler, and A. Facchetti, Nature, 457, 679 (2009).CrossRefGoogle Scholar
  5. (5).
    K.-J. Baeg, M. Caironi, and Y.-Y. Noh, Adv. Mater., 25, 4210 (2013).CrossRefGoogle Scholar
  6. (6).
    J. You, L. Dou, K. Yoshimura, T. Kato, K. Ohya, T. Moriarty, K. Emery, C.-C. Chen, J. Gao, G. Li, and Y. Yang, Nat. Commun., 4, 1446 (2013).CrossRefGoogle Scholar
  7. (7).
    M. Gross, D. C. Müller, H.-G. Nothofer, U. Scherf, D. Neher, C. Bräuchle, and K. Meerholz, Nature, 405, 661 (2000).CrossRefGoogle Scholar
  8. (8).
    J. Huang, J. Miragliotta, A. Becknell, and H. E. Katz, J. Am. Chem. Soc., 129, 9366 (2007).CrossRefGoogle Scholar
  9. (9).
    F. Zhang, C. Di, N. Berdunov, Y. Hu, Y. Hu, X. Gao, Q. Meng, H. Sirringhaus, and D. Zhu, Adv. Mater., 25, 1401 (2013).CrossRefGoogle Scholar
  10. (10).
    J. Huang, J. Sun, and H. E. Katz, Adv. Mater., 20, 2567 (2008).CrossRefGoogle Scholar
  11. (11).
    Y. Zang, F. Zhang, D. Huang, C. Di, Q. Meng, X. Gao, and D. Zhu, Adv. Mater., 26, 2862 (2014).CrossRefGoogle Scholar
  12. (12).
    S. Ji, H. Wang, T. Wang, and D. Yan, Adv. Mater., 25, 1755 (2013).CrossRefGoogle Scholar
  13. (13).
    L. Li, P. Gao, M. Baumgarten, K. Müllen, N. Lu, H. Fuchs, and L. Chi, Adv. Mater., 25, 3419 (2013).CrossRefGoogle Scholar
  14. (14).
    S.-H. Jeong, J. Y. Lee, B. Lim, J. Lee, and Y.-Y. Noh, Dyes Pigm., 140, 244 (2017).CrossRefGoogle Scholar
  15. (15).
    K. Besar, S. Yang, X. Guo, W. Huang, A. M. Rule, P. N. Breysse, I. J. Kymissis, and H. E. Katz, Org. Electron., 15, 3221 (2014).CrossRefGoogle Scholar
  16. (16).
    G.-S. Ryu, K. H. Park, W.-T. Park, Y.-H. Kim, and Y.-Y. Noh, Org. Electron., 23, 76 (2015).CrossRefGoogle Scholar
  17. (17).
    A. Das, R. Dost, T. Richardson, M. Grell, J. J. Morrison, and M. L. Turner, Adv. Mater., 19, 4018 (2007).CrossRefGoogle Scholar
  18. (18).
    A. Gusan, N. J. Joshi, P.V. Varde, and D. K. Aswal, Sens. Actuators B, 239, 734 (2017).CrossRefGoogle Scholar
  19. (19).
    D. Khim, G.-S. Ryu, W.-T. Park, H. Kim, M. Lee, and Y.-Y. Noh, Adv. Mater., 28, 2752 (2016).CrossRefGoogle Scholar
  20. (20).
    S. H. Yu, J. Cho, K. M. Sim, J. U. Ha, and D. S. Chung, ACS Appl. Mater. Interfaces, 8, 6570 (2016).CrossRefGoogle Scholar
  21. (21).
    A. Lv, M. Wang, Y. Wang, Z. Bo, and L. Chi, Chem. Eur. J., 22, 3654 (2016).CrossRefGoogle Scholar
  22. (22).
    Y. Yang, G. Zhang, H. Luo, J. Yao, Z. Liu, and D. Zhang, ACS Appl. Mater. Interfaces, 8, 3635 (2016).CrossRefGoogle Scholar
  23. (23).
    B. Nketia-Yawson, A-R. Jung, Y. Noh, G.-S. Ryu, G. D. Tabi, K.-K. Lee, B. Kim, and Y.-Y. Noh, ACS Appl. Mater. Interfaces, 9, 7322 (2017).CrossRefGoogle Scholar
  24. (24).
    A. Klug, M. Denk, T. Bauer, M. Sandholzer, U. Scherf, C. Slugovc, and E. J. W. List, Org. Electron., 14, 500 (2013).CrossRefGoogle Scholar
  25. (25).
    D. Boudinet, M. Benwadih, Y. Qi, S. Altazin, J.-M. Verilhac, M. Kroger, C. Serbutoviez, R. Gwoziecki, R. Coppard, G. L. Blevennec, A. Kahn, and G. Horowitz, Org. Electron., 11, 227 (2010).CrossRefGoogle Scholar
  26. (26).
    P. Marmont, N. Battaglini, P. Lang, G. Horowitz, J. Hwang, A. Kahn, C. Amato, and P. Calas, Org. Electron., 9, 419 (2008).CrossRefGoogle Scholar
  27. (27).
    C. Zhou, J. Zhao, J. Ye, M. Tange, X. Zhang, W. Xu, K. Zhang, T. Okazaki, and Z. Cui, Carbon, 108, 372 (2016).CrossRefGoogle Scholar
  28. (28).
    S. G. Surya, S. S. Nagarkar, S. K. Ghosh, P. Sonar, and V. R. Rao, Sens. Actuators B, 223, 114 (2016).CrossRefGoogle Scholar
  29. (29).
    K. H. Cheon, J. Cho, Y.-H. Kim, and D. S. Chung, ACS Appl. Mater. Interfaces, 7, 14004 (2015).CrossRefGoogle Scholar
  30. (30).
    W. Yuan, L. Huang, Q. Zhou, and G. Shi, ACS Appl. Mater. Interfaces, 6, 17003 (2014).CrossRefGoogle Scholar
  31. (31).
    T. Xie, G. Xie, Y. Zhou, J. Huang, M. Wu, Y. Jiang, and H. Tai, Chem. Phys. Lett., 614, 275 (2014).CrossRefGoogle Scholar
  32. (32).
    T. Xie, G. Xie, Y. Su, D. Hongfei, Z. Ye, and Y. Jiang, Nanotechnology, 27, 065502 (2016).CrossRefGoogle Scholar
  33. (33).
    S. Han, X. Zhuang, W. Shi, X. Yang, and J. Yu, Sens. Actuators B, 225, 10 (2016).CrossRefGoogle Scholar
  34. (34).
    Q. Wang, S. Wu, F. Ge, G. Zhang, H. Lu, and L. Qiu, Adv. Mater. Interfaces, 3, 1600518 (2016).CrossRefGoogle Scholar
  35. (35).
    J. Lee, A.-R. Han, H. Yu, T. J. Shin, C. Yang, and J. H. Oh, J. Am. Chem. Soc., 135, 9540 (2013).CrossRefGoogle Scholar
  36. (36).
    J. Mei, D. H. Kim, A. L. Ayzner, M. F. Toney, and Z. Bao, J. Am. Chem. Soc., 133, 20130 (2011).CrossRefGoogle Scholar
  37. (37).
    S. Yum, T. K. An, X. Wang, W. Lee, M. A. Uddin, Y. J. Kim, T. L. Nguyen, S. Xu, S. Hwang, C. E. Park, and H. Y. Woo, Chem. Mater., 26, 2147 (2014).CrossRefGoogle Scholar
  38. (38).
    O. Knopfmacher, M. L. Hammock, A. L. Appleton, G. Schwartz, J. Mei, T. Lei, J. Pei, and Z. Bao, Nat. Commun., 5, 2954 (2014).CrossRefGoogle Scholar
  39. (39).
    S. C. Price, A. C. Stuart, L. Yang, H. Zhou, and W. You, J. Am. Chem. Soc., 133, 4625 (2011).CrossRefGoogle Scholar
  40. (40).
    S. Yum, T. K. An, X. Wang, W. Lee, M. A. Uddin, Y. J. Kim, T. L. Nguyen, S. Xu, S. Hwang, C. E. Park, and H. Y. Woo, Chem. Mater. 26, 2147 (2014).CrossRefGoogle Scholar
  41. (41).
    Z. Fei, P. Boufflet, S. Wood, J. Wade, J. Moriarty, E. Gann, E. L. Ratcliff, C. R. McNeill, H. Sirringhaus, J.-S. Kim, and M. Heeney, J. Am. Chem. Soc., 137, 6866 (2015).CrossRefGoogle Scholar
  42. (42).
    P. Boufflet, Y. Han, Z. Fei, N. D. Treat, R. Li, D.-M. Smilgies, N. Stingelin, T. D. Anthopoulos, and M. Heeney, Adv. Funct. Mater., 25, 7038 (2015).CrossRefGoogle Scholar

Copyright information

© The Polymer Society of Korea and Springer Science+Business Media B.V. 2017

Authors and Affiliations

  1. 1.Department of Energy and Materials EngineeringDongguk UniversitySeoulKorea

Personalised recommendations