Macromolecular Research

, Volume 25, Issue 5, pp 452–460 | Cite as

Chemical modification of graphene oxide through poly(ethylene oxide)-conjugations

  • Abu Bakkar Siddique
  • Jin Wook An
  • Hyun Jun Kim
  • Hyeonjong Park
  • Geon Chang Lee
  • Jae Yeol Lee
  • Sehoon Kim
  • Minhoo Byeon
  • Chong Rae Park
  • Jungahn Kim
Article

Abstract

This paper introduces poly(ethylene oxide) (PEO)-based modification of graphene oxide (GO) layers through the grafting onto the surface of GO as one of the excellent tools to improve the solubility and the processing ability of graphene. Methylene blue (MB)-mediated intercalation of graphite (flake) was first performed at 25 °C in aqueous media, followed by the Hummers’ process for oxidation, leading to an efficient production of GO. Direct oxidation of graphite (powder) also yielded the corresponding GO. The reaction of neutralized GO with “living” PEOs synthesized from alkyllithium- or sodium azide-initiated polymerization of ethylene oxide (EO) in polar solvents led to the production of the corresponding graphene oxide-g-PEOs soluble in different solvents such as tetrahydrofuran (THF), methanol, dimethyl sulfoxide (DMSO), and H2O, etc. The resulting products were characterized by the combination of size exclusion chromatographic, 1H nuclear magnetic resonance (1H NMR), Raman, thermogravimetric anlysis (TGA), transmission electron microscopy (TEM), and atomic force microscopy (AFM) analyses.

Keywords

living anionic ring-opening polymerization methylene blue-mediated intercalation soluble graphene oxides graphene oxide-g-PEO graphene oxide-g-PEO-N3 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Supplementary material

13233_2017_5069_MOESM1_ESM.pdf (2.3 mb)
Supporting Information

References

  1. (1).
    D. A. Dikin, S. Stankovich, E. J. Zimmney, R. D. Piner, G. H. B. Dommett, G. Evmenenko, S. T. Nguyen, and R. S. Ruoff, Nature, 448, 457 (2007).CrossRefGoogle Scholar
  2. (2).
    A. K. Geim and K. S. Novoselov, Nat. Mater., 6, 183 (2007).CrossRefGoogle Scholar
  3. (3).
    J. Cai, P. Ruffieux, R. Jaafar, M. Bieri, T. Braun, S. Blankenburg, M. Muoth, A. P. Seitsonen, M. Saleh, X. Feng, K. Mullen, and R. Fasel, Nature, 466, 470 (2010).CrossRefGoogle Scholar
  4. (4).
    K. S. Novoselov, A. K. Geim, S. V. Morozov, D. Jiang, Y. Zhang, S. V. Dubonos, I. V. Grigorieva, and A. A. Firsov, Science, 306, 666 (2004).CrossRefGoogle Scholar
  5. (5).
    B. Balog, B. Jorgensen, L. Nilsson, M. Andersen, E. Rienks, M. Bianchi, M. Fanetti, E. Laegsgaard, A. Baraldi, S. Lizzit, Z. Sljivancanin, F. Besenbacher, B. Hammer, T. G. Pedersen, P. Hofmann, and L. Hornekaer, Nat. Mater., 9, 315 (2010).CrossRefGoogle Scholar
  6. (6).
    J. H. Warner, M. H. Rummeli, L. Ge, T. Gemming, B. Montanari, N. M. Harrison, B. Buchner, and G. A. D. Briggs, Nat. Nanotechnol., 4, 500 (2009).CrossRefGoogle Scholar
  7. (7).
    C. Gomez-Navarro, M. Burghard, and K. Kern, Nano Lett., 8, 2045 (2008).CrossRefGoogle Scholar
  8. (8).
    Z. Liu, J. T. Robinson, X. Sun, and H. Dai, J. Am. Chem. Soc., 130, 10876 (2008).CrossRefGoogle Scholar
  9. (9).
    W. Yang, K. R. Ratinac, S. P. Ringer, P. Thordarson, J. J. Gooding, and F. Braet, Angew. Chem. Int. Ed., 49, 2114 (2010).CrossRefGoogle Scholar
  10. (10).
    H. P. Cong, J. J. He, Y. Lu, and S. H. Yu, Small, 6, 169 (2010).CrossRefGoogle Scholar
  11. (11).
    W. S. Hummers Jr. and R. E. Offeman, J. Am. Chem. Soc., 80, 1339 (1958).CrossRefGoogle Scholar
  12. (12).
    J. Chen, B. Yao, C. Li, and G. Shi, Carbon, 64, 225 (2013).CrossRefGoogle Scholar
  13. (13).
    J. Chen, Y. Li, L. Huang, C. Li, and S. Shi, Carbon, 81, 826 (2015).CrossRefGoogle Scholar
  14. (14).
    J. Zhang, J. Xia, Q. Zhao, L. Liu, and Z. Zhang, Small, 6, 537 (2010).CrossRefGoogle Scholar
  15. (15).
    M. Liang and L. Zhi, J. Mater. Chem., 19, 5871 (2009).CrossRefGoogle Scholar
  16. (16).
    D. C. Marcano, D. V. Kosynkin, J. M. Berlin, A. Sinitskii, Z. Sun, A. Slesarev, L. B. Alemany, W. Lu, and J. M. Tour, ACS Nano, 4, 4806 (2010).CrossRefGoogle Scholar
  17. (17).
    H. R. Thomas, A. J. Marsden, M. Walker, N. R. Wilson, and J. P. Rourke, Angew. Chem. Int. Ed., 53, 7613 (2014).CrossRefGoogle Scholar
  18. (18).
    D. Zhang, L. Fu, L. Liao, N. Liu, B. Dai, and C. Zhang, Nano Res., 5, 875 (2012).CrossRefGoogle Scholar
  19. (19).
    T. Liu, Y. Li, Q. Du, J. Sun, Y. Jiao, G. Yang, Z. Wang, Y. Xia, W. Zhang, K. Wang, Z. Zhu, and D. Wu, Colloids Surf. B: Biointerfaces, 90, 197 (2012).CrossRefGoogle Scholar
  20. (20).
    S. T. Yang, S. Chen, Y. Chang, A. Cao, Y. Liu, and H. Wang, J. Colloid Interface Sci., 359, 24 (2011).CrossRefGoogle Scholar
  21. (21).
    A. Sahu, W. I. Choi, J. H. Lee, and G. Tae, Biomaterials, 34, 6239 (2013).CrossRefGoogle Scholar
  22. (22).
    M. J. McAllister, J. L. Li, D. H. Adamson, H. C. Schniepp, A. A. Abdala, J. Liu, M. Herrera-Alonso, D. L. Milius, R. Car, R. K. Prud’homme, and I. A. Aksay, Chem. Mater., 19, 4396 (2007).CrossRefGoogle Scholar
  23. (23).
    J. M. Englert, C. Dotzer, G. Yang, M. Schmid, C. Papp, J. M. Gottfried, H. P. Steinruck, E. Spiecker, F. Hauke, and A. Hirsch, Nat. Chem., 3, 279 (2011).CrossRefGoogle Scholar
  24. (24).
    L. Dai, Acc. Chem. Res., 46, 31 (2013).CrossRefGoogle Scholar
  25. (25).
    M. Quintana, E. Vazquez, and M. Prato, Acc. Chem. Res., 46, 138 (2013).CrossRefGoogle Scholar
  26. (26).
    W. R. Collins, W. Lewandowski, E. Schmois, J. Walish, and T. M. Swager, Angew. Chem. Int. Ed., 50, 8848 (2011).CrossRefGoogle Scholar
  27. (27).
    R. K. Layek and A. K. Nandi, Polymer, 54, 5087 (2013).CrossRefGoogle Scholar
  28. (28).
    Y. Wang, H. Wang, D. Liu, S. Song, X. Wang, and H. Zhang, Biomaterials, 34, 7715 (2013).CrossRefGoogle Scholar
  29. (29).
    O. Akhavan and E. Ghaderi, Small, 9, 3593 (2013).CrossRefGoogle Scholar
  30. (30).
    K. Yang, L. Feng, X. Shi, and Z. Liu, Chem. Soc. Rev., 42, 530 (2013).CrossRefGoogle Scholar
  31. (31).
    J. T. Robinson, S. M. Tabakman, Y. Liang, H. Wang, H. S. Casalongue, D. Vinh, and H. Dai, J. Am. Chem. Soc., 133, 6825 (2011).CrossRefGoogle Scholar
  32. (32).
    M. Cai, D. Thorpe, D. H. Adamson, and H. C. Schniepp, J. Mater. Chem., 22, 24992 (2012).CrossRefGoogle Scholar
  33. (33).
    R. P. Pandey, G. Shukla, M. Manohar, and V. K. Shahi, Adv. Colloid Interface Sci., 240, 15 (2017).CrossRefGoogle Scholar
  34. (34).
    B. J. Hong, O. C. Compton, Z. An, I. Eryazici, and S. T. Nguyen, ACS Nano, 6, 63 (2012).CrossRefGoogle Scholar
  35. (35).
    H. R. Thomas, D. J. Phillips, N. R. Wilson, M. I. Gibson, and J. P. Rourke, Polym. Chem., 6, 8270 (2015).CrossRefGoogle Scholar
  36. (36).
    J. Kim, S. Choi, K. M. Kim, D. H. Go, H. J. Jeon, J. Y. Lee, H. S. Park, C. H. Lee, and H. M. Park, Macromol. Res., 15, 337 (2007).CrossRefGoogle Scholar
  37. (37).
    S. Yang, Y. Kim, H. C. Kim, A. B. Siddique, G. Youn, H. J. Kim, H. Park, J. Y. Lee, S. Kim, and J. Kim, Polym. Chem., 7, 394 (2016).CrossRefGoogle Scholar
  38. (38).
    J. H. Maeng, D. H. Lee, K. H. Jung, Y. H. Bae, I. S. Park, S. Jeong, Y. S. Jeon, C. K. Shim, W. Kim, J. Kim, J. Lee, Y. M. Lee, J. H. Kim, W. H. Kim, and S. S. Hong, Biomaterials, 31, 4995 (2010).CrossRefGoogle Scholar
  39. (39).
    S. W. Kim, A. B. Siddique, J. W. An, H. Park, H. J. Kim, H.-J. Kang, J. Y. Lee, S. Kim, and J. Kim, Macromol. Res., 24, 188 (2016).CrossRefGoogle Scholar
  40. (40).
    J. Chen, F. Chi, L. Huang, M. Zhang, B. Yao, Y. Li, C. Li, and G. Shi, Carbon, 110, 34 (2016).CrossRefGoogle Scholar
  41. (41).
    E. Y. Choi, T. H. Han, J. Hong, J. E. Kim, S. H. Lee, H. W. Kim, and S. O. Kim, J. Mater. Chem., 20, 1907 (2010).CrossRefGoogle Scholar
  42. (42).
    S. Park, J. An, R. D. Piner, I. Jung, D. Yang, A. Velamakanni, S. T. Nguyen, and R. S. Ruoff, Chem. Mater., 20, 6592 (2008).CrossRefGoogle Scholar
  43. (43).
    C. Shan, H. Yang, J. Song, D. Han, A. Ivaska, and L. Niu, Anal. Chem., 81, 2378 (2009).CrossRefGoogle Scholar
  44. (44).
    S. Stankovich, D. A. Dikin, R. D. Piner, K. A. Kohlhaas, A. Kleinhammes, Y. Jia, Y. Wu, S. T. Nguyen, and R. S. Ruoff, Carbon, 45, 1558 (2007).CrossRefGoogle Scholar
  45. (45).
    Z. Ni, Y. Wang, T. Yu, and Z. Shen, Nano Res., 1, 273 (2008).CrossRefGoogle Scholar
  46. (46).
    D. Graf, F. Molitor, K. Ensslin, C. Stampfer, A. Jungen, C. Hierold, and L. Wirtz, Nano Lett., 7, 238 (2007).CrossRefGoogle Scholar
  47. (47).
    R. Podila, R. Rao, R. Tsuchikawa, M. Ishigami, and A. M. Rao, ACS Nano, 6, 5784 (2012).CrossRefGoogle Scholar
  48. (48).
    A. C. Ferrari and D. M. Basko, Nat. Nanotechnol., 8, 235 (2013).CrossRefGoogle Scholar
  49. (49).
    I. Calizo, A. A. Balandin, W. Bao, F. Miao, and C. N. Lau, Nano Lett., 7, 2645 (2007).CrossRefGoogle Scholar
  50. (50).
    J. Shen, Y. Hu, C. Li, C. Qin, M. Shi, and M. Ye, Langmuir, 25, 6122 (2009).CrossRefGoogle Scholar
  51. (51).
    H. Wang, H. Zhou, A. Gestos, J. Fang, H. Niu, J. Ding, T. Lin, and T. Robust, Soft Matter, 9, 277 (2013).CrossRefGoogle Scholar
  52. (52).
    Y. Matsuo, K. Tahara, and Y. Sugie, Carbon, 34, 672 (1996).CrossRefGoogle Scholar
  53. (53).
    W. Zhang, Z. Guo, D. Huang, Z. Liu, X. Guo, and H. Zhong, Biomaterials, 32, 8555 (2011).CrossRefGoogle Scholar
  54. (54).
    Y. Yang, J. Wan, S. Zhang, Y. Zhang, S. T. Lee, and Z. Liu, ACS Nano, 5, 516 (2011).CrossRefGoogle Scholar
  55. (55).
    F. Barroso-Bujans, F. Fernandez-Alonso, S. Cerveny, S. Arrese-Igor, A. Alegria, and J. Colmenero, Macromolecules, 45, 3137 (2012).CrossRefGoogle Scholar
  56. (56).
    F. Barroso-Bujans, F. Fernandez-Alonso, J. A. Pomposo, S. Cerveny, A. Alegria, and J. Colmenero, ACS Macro Lett., 1, 550 (2012).CrossRefGoogle Scholar
  57. (57).
    W. R. Collins, E. Schmois, and T. M. Swager, Chem. Commun., 47, 8790 (2011).CrossRefGoogle Scholar
  58. (58).
    W. P. Wuelfing, S. M. Gross, D. T. Miles, and R. W. Murray, J. Am. Chem. Soc., 120, 12696 (1998).CrossRefGoogle Scholar
  59. (59).
    C. S. Levin, S. W. Bishnoi, N. K. Grady, and N. J. Halas, Anal. Chem., 78, 3277 (2006).CrossRefGoogle Scholar
  60. (60).
    P. G. de Gennes, Adv. Colloid Interface Sci., 27, 189 (1987).CrossRefGoogle Scholar
  61. (61).
    J. V. Jokerst, T. Lobovkina, R. N. Zare, and S. S. Gambhir, Nanomedicine, 6, 715 (2011).CrossRefGoogle Scholar

Copyright information

© The Polymer Society of Korea and Springer Science+Business Media B.V. 2017

Authors and Affiliations

  • Abu Bakkar Siddique
    • 1
  • Jin Wook An
    • 1
  • Hyun Jun Kim
    • 1
  • Hyeonjong Park
    • 1
  • Geon Chang Lee
    • 1
  • Jae Yeol Lee
    • 1
  • Sehoon Kim
    • 2
  • Minhoo Byeon
    • 3
  • Chong Rae Park
    • 3
  • Jungahn Kim
    • 1
  1. 1.Department of ChemistryKyung Hee UniversitySeoulKorea
  2. 2.Center for TheragnosisKISTSeoulKorea
  3. 3.School of Material Science and EngineeringSeoul National UniversitySeoulKorea

Personalised recommendations