Macromolecular Research

, Volume 24, Issue 12, pp 1111–1114 | Cite as

Effect of 4-hydroxybenzoic acid on CO2 separation performance of poly(ethylene oxide) membrane

  • Yeji Choi
  • Sang Wook KangEmail author


We successfully prepared highly selective poly(ethylene oxide) (PEO) membranes containing 4-hydroxybenzoic acid for CO2 separation. Because 4-hydroxybenzoic acid contains a benzene ring that acts as a barrier against gas transport and also contains hydroxyl and carboxyl groups that enhance the solubility of CO2 molecules, the incorporation of 4-hydroxybenzoic acid was expected to substantially increase the CO2/N2 selectivity. Indeed, when 4-hydroxybenzoic acid was incorporated into the PEO matrix, the CO2/N2 selectivity increased from 1.8 to 23 with a CO2 permeance of 8.8 GPU. The coordinative interactions of 4-hydroxybenzoic acid in the PEO matrix were confirmed by Fourier transform infrared spectroscopy. Additionally, thermogravimetric analysis verified that 4-hydroxybenzoic acid was strongly stabilized in the polymer matrix.


membrane CO2 separation poly(ethylene oxide) 4-hydroxybenzoic acid 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. (1).
    Climate Change 2007: The Physical Science Basis, S. Solomon, D. Qin, M. Manning, Z. Chen, M. Marquis, K. B. Averyt, M. Tignor, and H. L. Miller, Eds., Cambridge University Press, Cambridge, UK, 2007, 996.Google Scholar
  2. (2).
    H. C. Zhou, J. R. Long, and O. M. Yaghi, Chem. Rev., 112, 673 (2012).CrossRefGoogle Scholar
  3. (3).
    M. Dogru and T. Bein, Chem. Commun., 50, 5531 (2014).CrossRefGoogle Scholar
  4. (4).
    S. Han, Y. Huang, T. Watanabe, Y. Dai, K. S. Walton, S. Nair, D. S. Sholl, and J. C. Meredith, ACS Comb. Sci., 14, 263 (2012).CrossRefGoogle Scholar
  5. (5).
    Y. P. He, Y. X. Tan, F. Wang, and J. Zhang, Inorg. Chem., 51, 1995 (2012).CrossRefGoogle Scholar
  6. (6).
    L. B. Sun, A. G. Li, X. D. Liu, X. Q. Liu, D. Feng, W. Lu, D. Yuanb, and H. C. Zhou, J. Mater. Chem. A, 3, 3252 (2015).CrossRefGoogle Scholar
  7. (7).
    N. McCann, M. Maeder, and M. Attalla, Ind. Eng. Chem. Res., 47, 2002 (2008).CrossRefGoogle Scholar
  8. (8).
    J. Alejandre, J. L. Rivera, M. A. Mora, and V. de La Garza, J. Phys. Chem. B, 104, 1332 (2000).CrossRefGoogle Scholar
  9. (9).
    M. H. Nematollahi, A. H. S. Dehaghani, V. Pirouzfar, and E. Akhondi, Macromol. Res., 24, 782 (2016).CrossRefGoogle Scholar
  10. (10).
    S. Shelly, Chem. Eng. Prog., 105, 42 (2009).Google Scholar
  11. (11).
    M. Bracht, P. T. Alderliesten, R. Kloster, R. Pruschek, G. Haupt, E. Xue, J. R. H. Ross, M. K. Koukou, and N. Papayannakos, Energy Convers. Manag., 38, S159 (1997).CrossRefGoogle Scholar
  12. (12).
    S. Hanioka, T. Maruyama, T. Sotani, M. Teramoto, H. Matsuyama, K. Nakashima, M. Hanaki, F. Kubota, and M. Goto, J. Membr. Sci., 314, 1 (2008).CrossRefGoogle Scholar
  13. (13).
    M. Hammann, D. Castillo, C. Angerb, and B. Rieger, J. Mater. Chem. A, 2, 16389 (2014).CrossRefGoogle Scholar
  14. (14).
    A. Mondal and B. Mandal, Ind. Eng. Chem. Res., 53, 19736 (2014).CrossRefGoogle Scholar
  15. (15).
    W. Yave, A. Car, S. S. Funari, S. P. Nunes, and K.-V. Peinemann, Macromolecules, 43, 326 (2010).CrossRefGoogle Scholar
  16. (16).
    J. H. Oh, Y. S. Kang, and S. W. Kang, Chem. Commun., 49, 10181 (2013).CrossRefGoogle Scholar
  17. (17).
    G. H. Hong, D. Ji, and S. W. Kang, RSC Adv., 4, 16917 (2014).CrossRefGoogle Scholar
  18. (18).
    Y. Choi, Y. R. Kim, Y. S. Kang, and S. W. Kang, Chem. Eng. J., 279, 273 (2015).CrossRefGoogle Scholar
  19. (19).
    H. Lin and B. D. Freeman, J. Membr. Sci., 239, 105 (2004).CrossRefGoogle Scholar

Copyright information

© The Polymer Society of Korea and Springer Sciene+Business Media Dordrecht 2016

Authors and Affiliations

  1. 1.Department of ChemistrySangmyung UniversitySeoulKorea

Personalised recommendations