Macromolecular Research

, Volume 24, Issue 8, pp 710–715 | Cite as

Poly(styrene-alt-maleic anhydride)-block-poly(methacrylate-ran-styrene) block copolymers with tunable mechanical properties by nitroxide mediated controlled radical polymerization

  • Benoît H. Lessard
  • Sarah Mackay
  • Adrien Métafiot
  • Milan Marić


Poly(styrene-alt-maleic anhydride)-block-poly(methacrylate-ran-styrene) block copolymers were synthesized from low dispersity (M w/M n=1.24) and perfectly alternating poly(styrene-alt-maleic anhydride) macroinitiators, by nitroxide mediated controlled radical polymerization (NMP), using various methacrylate-rich mixtures: methyl methacrylate/styrene (MMA/S), ethyl methacrylate/styrene (EMMA/S), n-butyl methacrylate/styrene (BMA/S) and benzyl methacrylate/styrene (BzMA/S). Some irreversible termination was present during the chain extension from the macroinitiator, resulting in some bimodality in the molecular weight distribution of the final block copolymer (≈2% to ≈25% dead chains) which is common for methacrylate/styrene copolymerizations by NMP. The resulting final block copolymers were determined to be methacrylate-rich (molar ratio XMA/S ≈3.3 to 5.5) by 1H NMR and the resulting glass transition temperature (T g) of the chain-extended segments were found to be similar to the coresponding pure poly(methacrylate)s. NMP allows the controlled placement of functional maleic anhydride containing segments within a block copolymer with tunable mechanical properties by simple substitution of methacrylate monomer used in synthesis.


nitroxide mediated controlled radical polymerization (NMP) maleic anhydride (MA) methacrylate alternating copolymer block copolymer 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. (1).
    M. Szwarc, Nature, 178, 1168 (1956).CrossRefGoogle Scholar
  2. (2).
    M. Szwarc, M. Levy, and R. Milkovich, J. Am. Chem. Soc., 78, 2656 (1956).CrossRefGoogle Scholar
  3. (3).
    D. J. Siegwart, J. K. Oh, and K. Matyjaszewski, Prog. Polym. Sci. (Oxford), 37, 18 (2012).CrossRefGoogle Scholar
  4. (4).
    K. Min and K. Matyjaszewski, Central Eur. J. Chem., 7, 657 (2009).Google Scholar
  5. (5).
    R. Grubbs, Polym. Rev., 51, 104 (2011).CrossRefGoogle Scholar
  6. (6).
    J. Nicolas, Y. Guillaneuf, C. Lefay, D. Bertin, D. Gigmes, and B. Charleux, Prog. Polym. Sci., 38, 63 (2013).CrossRefGoogle Scholar
  7. (7).
    B. H. Lessard, in Nitroxide Mediated Polymerization: From Fundamentals to Applications in Materials Science, D. Gigmes, Ed., The Royal Society of Chemistry, Cambridge, 2016, pp 441–493.Google Scholar
  8. (8).
    J. Chiefari, Y. Chong, F. Ercole, J. Krstina, J. Jeffery, T. Le, R. Mayadunne, G. Meijs, C. Moad, G. Moad, E. Rizzardo, and S. Thang, Macromolecules, 31, 5559 (1998).CrossRefGoogle Scholar
  9. (9).
    J. Quinn, L. Barner, C. Barner-Kowollik, E. Rizzardo, and T. Davis, Macromolecules, 35, 7620 (2002).CrossRefGoogle Scholar
  10. (10).
    M. Georges, R. Veregin, and P. Kazmaier, Macromolecules, 26, 2987 (1993).CrossRefGoogle Scholar
  11. (11).
    P. Veregin, M. Georges, M. Kazmaier, and K. Hamer, Macromolecules, 26, 5316 (1993).CrossRefGoogle Scholar
  12. (12).
    B. H. Lessard, C. Tervo, and M. Maric, Macromol. React. Eng., 3, 245 (2009).CrossRefGoogle Scholar
  13. (13).
    B. H. B. Lessard, M. Maric, and M. Maric, Polym. Int., 57, 1141 (2008).CrossRefGoogle Scholar
  14. (14).
    K. Bian and M. Cunningham, Macromolecules, 38, 695 (2005).CrossRefGoogle Scholar
  15. (15).
    C. Farcet, J. Nicolas, and B. Charleux, J. Polym. Sci., Part A: Polym. Chem., 40, 4410 (2002).CrossRefGoogle Scholar
  16. (16).
    Z. J. Wang, B. H. Lessard, and M. Maric, eXPRESS Polym. Lett., 7, 1020 (2013).CrossRefGoogle Scholar
  17. (17).
    O. Gibbons, W. Carroll, F. Aldabbagh, P. Zetterlund, and B. Yamada, Macromol. Chem. Phys., 209, 2434 (2008).CrossRefGoogle Scholar
  18. (18).
    K. Schierholz, M. Givehchi, P. Fabre, F. Nallet, E. Papon, O. Guerret, and Y. Gnanou, Macromolecules, 36, 5995 (2003).CrossRefGoogle Scholar
  19. (19).
    B. H. Lessard, C. Tervo, S. De Wahl, F. Clerveaux, K. Tang, S. Yasmine, S. Andjelic, A. D'Alessandro, and M. Maric, Macromolecules, 43, 868 (2010).CrossRefGoogle Scholar
  20. (20).
    B. H. Lessard, X. Savelyeva, and M. Maric, Polymer (United Kingdom), 53, 5649 (2012).CrossRefGoogle Scholar
  21. (21).
    J. Nicolas, S. Brusseau, and B. Charleux, J. Polym. Sci., Part A: Polym. Chem., 48, 34 (2010).CrossRefGoogle Scholar
  22. (22).
    J. Belleney, S. Magnet, L. Couvreur, and B. Charleux, Polym. Chem., 1, 720 (2010).CrossRefGoogle Scholar
  23. (23).
    B. H. Lessard and M. Maric, J. Polym. Sci., Part A: Polym. Chem., 49, 5270 (2011).CrossRefGoogle Scholar
  24. (24).
    J. L. Lang, W. A. Pavelich, and H. D. Clarey, J. Polym. Sci., Part A, 1, 1123 (1963).Google Scholar
  25. (25).
    M. Ratzsch, Prog. Polym. Sci., 13, 277 (1988).CrossRefGoogle Scholar
  26. (26).
    B. H. Lessard and M. Maric, Macromolecules, 43, 879 (2010).CrossRefGoogle Scholar
  27. (27).
    D. Benoit, C. J. Hawker, E. E. Huang, Z. Lin, and T. P. Russell, Macromolecules, 33, 1505 (2000).CrossRefGoogle Scholar
  28. (28).
    E.-S. Park, M.-N. Kim, I.-M. Lee, H. Lee, and J.-S. Yoon, J. Polym. Sci., Part A: Polym. Chem., 38, 2239 (2000).CrossRefGoogle Scholar
  29. (29).
    G. Saldivar and M. Gonzalez, US Patent 7,323, 528 B2 (2008).Google Scholar
  30. (30).
    C. Chiang and F. Chang, Polymer, 38, 4807 (1997).CrossRefGoogle Scholar
  31. (31).
    S. Filippi, L. Minkova, N. Dintcheva, and P. Narducci, Polymer, 46, 8054 (2005).CrossRefGoogle Scholar
  32. (32).
    B. H. Lessard, C. Aumand-Bourque, R. Chaudury, D. Gomez, A. Haroon, N. Ibrahimian, S. Mackay, M.-C. Noel, R. Patel, S. Sitaram, S. Valla, B. White, and M. Maric, Int. Polym. Process, 26, 197 (2011).CrossRefGoogle Scholar
  33. (33).
    M. Wang, X. Zhu, S. Wang, and L. Zhang, Polymer, 40, 7387 (1999).CrossRefGoogle Scholar
  34. (34).
    A. M. Al-Sabagh, M. R. N. El-Din, R. E. Morsi, and M. Z. Elsabee, J. Pet. Sci. Eng., 65, 139 (2009).CrossRefGoogle Scholar
  35. (35).
    S. Henry, M. El-Sayed, and C. Pirie, Biomacromolecules, 7, 2407 (2006).CrossRefGoogle Scholar
  36. (36).
    J.-J. Lin and Y.-C. Hsu, J. Colloid Interface Sci., 336, 82 (2009).CrossRefGoogle Scholar
  37. (37).
    T. Pompe, S. Zschoche, N. Herold, and K. Salchert, Biomacromolecules, 4, 1072 (2003).CrossRefGoogle Scholar
  38. (38).
    B. H. Lessard and M. Maric, J. Polym. Res., 23, 40 (2016).CrossRefGoogle Scholar
  39. (39).
    B. H. Lessard and M. Maric, Macromolecules, 41, 7881 (2008).CrossRefGoogle Scholar
  40. (40).
    P. Zetterlund, Y. Saka, R. McHale, T. Nakamura, F. Aldabbagh, and M. Okubo, Polymer, 47, 7900 (2006).CrossRefGoogle Scholar
  41. (41).
    J. Nicolas, C. Dire, L. Mueller, J. Belleney, B. Charleux, S. R. A. Marque, D. Bertin, S. Magnet, and L. Couvreur, Macromolecules, 39, 8274 (2006).CrossRefGoogle Scholar
  42. (42).
    B. Charleux, J. Nicolas, and O. Guerret, Macromolecules, 38, 5485 (2005).CrossRefGoogle Scholar
  43. (43).
    Y. Guillaneuf, D. Gigmes, S. Marque, P. Tordo, and D. Bertin, Macromol. Chem. Phys., 207, 1278 (2006).CrossRefGoogle Scholar
  44. (44).
    B. Lessard and M. Marlc, J. Polym. Sci., Part A: Polym. Chem., 47, 2574 (2009).CrossRefGoogle Scholar
  45. (45).
    V. E. Meyer, J. Polym. Sci., Part A-1, 5, 1289 (1967).CrossRefGoogle Scholar
  46. (46).
    T. Otsu, T. Ito, and M. Imoto, J. Polym. Sci., Part B: Polym. Lett., 3, 113 (1965).CrossRefGoogle Scholar
  47. (47).
    F. R. Mayo and F. M. Lewis, J. Am. Chem. Soc., 66, 1594 (1944).CrossRefGoogle Scholar
  48. (48).
    J. Brandrup, E. H. Immergut, and E. A. Grulke, Polymer Handbook, 4th ed., John Wiley & Sons, New York, 2003.Google Scholar

Copyright information

© The Polymer Society of Korea and Springer Sciene+Business Media Dordrecht 2016

Authors and Affiliations

  1. 1.Department of Chemical and Biological EngineeringUniversity of OttawaOttawaCanada
  2. 2.Department of Chemical EngineeringMcGill UniversityMontrealCanada

Personalised recommendations