Advertisement

Macromolecular Research

, Volume 24, Issue 4, pp 314–322 | Cite as

Interconnection of electrospun nanofibers via a post co-solvent treatment and its open pore size effect on pressure-retarded osmosis performance

  • Chul Ho ParkEmail author
  • Harim Bae
  • Sung Jo Kwak
  • Moon Seok Jang
  • Jung-Hyun LeeEmail author
  • Jonghwi LeeEmail author
Articles

Abstract

Design of support layer structures for asymmetric thin film composite membranes has drawn keen attention to improve the power density for salinity gradient power based on pressure-retarded osmosis. This study has interests on electrospun nanofiber-based support layers, and the effects of its open pore sizes are attractively stated. To control the open pore size, a counter charge deposition method was introduced. To retain the open pore size, all the nanofibers were interconnected by a post co-solvent treatment technology. For a thin film composite membrane, an interfacial polymerization was used to fabricate a polyamide active layer on the electrospun nanofiber-based support layers. It was found that although the maximum power density achieved with an open pore size of 2.4 μm2 was 0.14 W/m2, it increased significantly up to 9.5 W/m2 when the pore size was reduced to 0.65 μm2. The cause is the salt flux which increases with increasing the open pore sizes under applied pressures.

Keywords

pressure-retarded osmosis electrospinning nanofiber support layer open pore size salt flux 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. (1).
    T. Thorsen and T. Holt, J. Membr. Sci., 335, 103 (2009).CrossRefGoogle Scholar
  2. (2).
    K. Gerstandt, K. V. Peinemann, S. E. Skilhagen, T. Thorsen, and T. Holt, Desalination, 224, 64 (2008).CrossRefGoogle Scholar
  3. (3).
    A. Dai and K. E. Treberth, J. Hydrometeorol., 3, 660 (2002).CrossRefGoogle Scholar
  4. (4).
    F. La Mantia, M. Pasta, H. D. Deshazer, B. E. Logan, and Y. Cui, Nano Lett., 11, 1810 (2011).CrossRefGoogle Scholar
  5. (5).
    B. E. Logan and M. Elimelech, Nature, 488, 313 (2012).CrossRefGoogle Scholar
  6. (6).
    Q. She, X. Jin, and C. Y. Tang, J. Membr. Sci., 401, 262 (2012).CrossRefGoogle Scholar
  7. (7).
    P. G. Ingole, W. Choi, K. H. Kim, C. H. Park, W. K. Choi, and H. K. Lee, Chem. Eng. J., 243, 137 (2014).CrossRefGoogle Scholar
  8. (8).
    R. Patel, W. S. Chi, S. H. Ahn, C. H. Park, H.-K. Lee, and J. H. Kim, Chem. Eng. J., 247, 1 (2014).CrossRefGoogle Scholar
  9. (9).
    P. G. Ingole, K. H. Kim, C. H. Park, W. K. Choi, and H. K. Lee, RSC Adv., 4, 51430 (2014).CrossRefGoogle Scholar
  10. (10).
    J. W. Post, J. Veerman, H. V. M. Hamelers, G. J. W. Euverink, S. J. Metz, K. Nymeijer, and C. J. N. Buisman, J. Membr. Sci., 288, 218 (2007).CrossRefGoogle Scholar
  11. (11).
    S. C. Chen, C. F. Wan, and T.-S. Chung, J. Membr. Sci., 479, 190 (2015).CrossRefGoogle Scholar
  12. (12).
    P. Dlugolecki, K. Nymeijer, S. Metz, and M. Wessling, J. Membr. Sci., 319, 214 (2008).CrossRefGoogle Scholar
  13. (13).
    J. Gao, W. Guo, D. Feng, H. Wang, D. Zhao, and L. Jiang, J. Am. Chem. Soc., 136, 12265 (2014).CrossRefGoogle Scholar
  14. (14).
    B. J. Feinberg, G. Z. Ramon, and E. M. V. Hoek, J. Membr. Sci., 476, 311 (2015).CrossRefGoogle Scholar
  15. (15).
    N. Y. Yip, A. Tiraferri, W. A. Phillip, J. D. Schiffman, L. A. Hoover, Y. C. Kim, and M. Elimelech, Environ. Sci. Technol., 45, 4360 (2011).CrossRefGoogle Scholar
  16. (16).
    I. J. Roh, J.-J. Kim, and S. Y. Park, J. Membr. Sci., 197, 199 (2002).CrossRefGoogle Scholar
  17. (17).
    X. Song, Z. Liu, and D. D. Sun, Energy Environ. Sci., 6, 1199 (2013).CrossRefGoogle Scholar
  18. (18).
    M. Wang, H.-J. Jin, D. L. Kaplan, and G. C. Rutledge, Macromolecules, 37, 6856 (2004).CrossRefGoogle Scholar
  19. (19).
    L. Huang, S. S. Manickam, and J. R. McCutcheon, J. Membr. Sci., 436, 213 (2013).CrossRefGoogle Scholar
  20. (20).
    N.-N. Bui, M. L. Lind, E. M. V. Hoek, and J. R. McCutcheon, J. Membr. Sci., 385-386, 10 (2011).CrossRefGoogle Scholar
  21. (21).
    N.-N. Bui and J. R. McCutcheon, Environ. Sci. Technol., 47, 1761 (2012).Google Scholar
  22. (22).
    L. Huang, J. T. Arena, S. S. Manickam, X. Jiang, B. G. Willis, and J. R. McCutcheon, J. Membr. Sci., 460, 241 (2014).CrossRefGoogle Scholar
  23. (23).
    Q. She, D. Hou, J. Liu, K. H. Tan, and C. Y. Tang, J. Membr. Sci, 445, 170 (2013).CrossRefGoogle Scholar
  24. (24).
    L. H. Catalani, G. Collins, and M. Jaffe, Macromolecules, 40, 1693 (2007).CrossRefGoogle Scholar
  25. (25).
    C. H. Park, K.-H. Kim, J.-C. Lee, and J. Lee, Poly. Bull., 61, 521 (2008).CrossRefGoogle Scholar
  26. (26).
    S. Kaur, R. Barhate, S. Sundarrajan, T. Matsuura, and S. Ramakrishna, Desalination, 279, 201 (2011).CrossRefGoogle Scholar
  27. (27).
    K. Yoon, B. S. Hsiao, and B. Chu, Polymer, 50, 2893 (2009).CrossRefGoogle Scholar
  28. (28).
    C. H. Park, J. H. Kim, M. Ree, B.-H. Sohn, J. C. Jung, and W.-C. Zin, Polymer, 45, 4507 (2004).CrossRefGoogle Scholar
  29. (29).
    S. Hong, C. F. Schaber, K. Dening, E. Appel, S. N. Gorb, and H. Lee, Adv. Mater., 26, 7581 (2014).CrossRefGoogle Scholar
  30. (30).
    C. H. Park and J. Lee, Macromol. Mater. Eng., 295, 544 (2010).CrossRefGoogle Scholar
  31. (31).
    B. A. Miller-Chou and J. L. Koenig, Prog. Polym. Sci., 28, 1223 (2003).CrossRefGoogle Scholar
  32. (32).
    K. L. Lee, R. W. Baker, and H. K. Lonsdale, J. Membr. Sci., 8, 141 (1981).CrossRefGoogle Scholar
  33. (33).
    S. Chou, L. Shi, R. Wang, C. Y. Tang, C. Qiu, and A. G. Fane, Desalination, 261, 365 (2010).CrossRefGoogle Scholar
  34. (34).
    S. Bouazizi and S. Nasr, J. Mol. Liq., 162, 78 (2011).CrossRefGoogle Scholar
  35. (35).
    J.-G. Gai, X.-L. Gong, W.-L. Kang, X. Zhang, and W.-W. Wang, Desalination, 333, 52 (2014).CrossRefGoogle Scholar
  36. (36).
    F.-J. Fu, S.-P. Sun, S. Zhang, and T.-S. Chung, J. Membr. Sci., 469, 488 (2014).CrossRefGoogle Scholar

Copyright information

© The Polymer Society of Korea and Springer Sciene+Business Media Dordrecht 2016

Authors and Affiliations

  1. 1.Jeju Global Research Center (JGRC)Korea Institute of Energy Research (KIER)Jeju Specific Self-Governing ProvinceKorea
  2. 2.Department of Chemical and Biological EngineeringKorea UniversitySeoulKorea
  3. 3.Department of Chemical Engineering and Materials ScienceChung-Ang UniversitySeoulKorea

Personalised recommendations