Advertisement

Macromolecular Research

, Volume 23, Issue 12, pp 1091–1097 | Cite as

Effect of pore sizes of silk scaffolds for cartilage tissue engineering

  • Kap-Soo Han
  • Jeong Eun Song
  • Nirmalya Tripathy
  • Hyeongseok Kim
  • Bo Mi Moon
  • Chan Hum Park
  • Gilson KhangEmail author
Article

Abstract

The aim of this study was to investigate the effects of silk fibroin scaffold, a natural biodegradable polymer scaffold, on the adhesive and proliferative behaviors of chondrocytes. Various silk fibroin scaffolds were produced using the salt extraction method, and scaffolds with different pore sizes (90-180, 180-250, 250-355, and 355-425 μm) were constructed based on the size of the salt particles. Chondrocytes were seeded on the scaffolds and incubated. The produced scaffolds were analyzed with Fourier transform-infrared spectroscopy and exhibited characteristics similar to those of natural silk in terms of chemical composition and structure. Moreover, we found that the mechanical strength decreased as the pore size increased. Scanning electron microscopy images confirmed the existence of pores in the silk fibroin scaffold. Additionally, scaffolds with smaller pore sizes facilitated improved cell adhesion. Using MTT analysis, we found that scaffold with pore sizes of 90-180 and 180-250 μm provided the best environment for cell proliferation. The amount levels of sulfated glycosaminoglycan (sGAG) and collagen were highest for scaffolds with a pore size of 90-180 μm. In gene expression analysis, scaffolds with pore sizes of 90-180 and 180-250 μm showed the highest expression of the chondrocytes marker aggrecan and type II collagen. Collectively, these data suggest that silk fibroin scaffolds with smaller pore sizes (90-250 μm) provide the best environment for adhesion and proliferation of chondrocytes.

Keywords

chondrocytes silk fibroin pore scaffold cartilage regeneration 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. (1).
    T. H. Qazi, R. Rai, and A. R. Boccaccini, Biomaterials, 35, 9068 (2014).CrossRefGoogle Scholar
  2. (2).
    D. Schumann, A. K. Ekaputra, C. X. Lam, and D. W. Hutmacher, Methods Mol. Med., 140, 101 (2007).CrossRefGoogle Scholar
  3. (3).
    A. Vats, N. S. Tolley, J. M. Polak, and J. E. Gough, Clin. Otolaryngol. Allied Sci., 28, 165 (2003).CrossRefGoogle Scholar
  4. (4).
    S. J. Lee, Int. J. Tissue Regen., 4, 89 (2013).Google Scholar
  5. (5).
    S. L. Niemansburg, J. J. van Delden, F. C. Oner, W. J. Dhert, and A. L. Bredenoord, Spine J., 14, 1029 (2014).CrossRefGoogle Scholar
  6. (6).
    A. French, J. Y. Suh, C. Y. Suh, L. Rubin, R. Barker, K. Bure, B. Reeve, and D. A. Brindley, Trends Biotechnol., 32, 436 (2014).CrossRefGoogle Scholar
  7. (7).
    A. Atala, J. Pediatr. Surg., 47, 17 (2012).CrossRefGoogle Scholar
  8. (8).
    E. Cosgriff-Hernandez and A. G. Mikos, Pharm. Res., 25, 2345 (2008).CrossRefGoogle Scholar
  9. (9).
    L. M. Li, M. Han, G. Khang, and J. Q. Gao, Int. J. Tissue Regen., 4, 65 (2013).Google Scholar
  10. (10).
    L. P. Yan, J. M. Oliveira, A. L. Oliveira, S. G. Caridade, J. F. Mano, and R. L. Reis, Acta Biomater., 8, 289 (2012).CrossRefGoogle Scholar
  11. (11).
    S. Talukdar, Q. T. Nguyen, A. C. Chen, R. L. Sah, and S. C. Kundu, Biomaterials, 32, 8927 (2011).CrossRefGoogle Scholar
  12. (12).
    Y. Wang, D. J. Blasioli, H. J. Kim, H. S. Kim, and D. L. Kaplan, Biomaterials, 27, 4434 (2006).CrossRefGoogle Scholar
  13. (13).
    F. J. O’Brien, B. A. Harley, M. A. Waller, I. V. Yannas, L. J. Gibson, and P. J. Prendergast, Technol. Health Care, 15, 3 (2007).Google Scholar
  14. (14).
    C. M. Murphy, M. G. Haugh, and F. J. O’Brien, Biomaterials, 31, 461 (2010).CrossRefGoogle Scholar
  15. (15).
    C. Lane and J. Boulton, Adv. Biosci., 63, 125 (1987).Google Scholar
  16. (16).
    G. L. Wilkes and S. L. Samuels, J. Biomed. Mater. Res., 7, 541 (1973).CrossRefGoogle Scholar
  17. (17).
    L. Norton and M. Chvapil, J. Trauma, 21, 463 (1981).Google Scholar
  18. (18).
    K. J. Quinn, J. M. Courtney, J. H. Evans, J. D. S. Gaylor, and W. H. Reid, Biomaterials, 6, 369 (1985).CrossRefGoogle Scholar
  19. (19).
    P. Le Bail, F. G. Morin, and R. H. Marchessault, Int. J. Biol. Macromol., 26, 193 (1999).CrossRefGoogle Scholar
  20. (20).
    M. K. Yoo, H. Y. Kweon, K. G. Lee, H. C. Lee, and C. S. Cho, Int. J. Biol. Macromol., 34, 263 (2004).CrossRefGoogle Scholar
  21. (21).
    C. Correia, S. Bhumiratana, L. P. Yan, A. L. Oliveira, J. M. Gimble, D. Rockwood, D. L. Kaplan, R. A. Sousa, R. L. Reis, and G. Vunjak-Novakovic, Acta Biomater., 8, 2483 (2012).CrossRefGoogle Scholar
  22. (22).
    H. S. Park, M. S. Gong, J. H. Park, S. I. Moon, I. B. Wall, H. W. Kim, J. H. Lee, and J. C. Knowles, Acta Biomater., 9, 8962 (2013).CrossRefGoogle Scholar
  23. (23).
    Y. Wang, D. D. Rudym, A. Walsh, L. Abrahamsen, H. J. Kim, H. S. Kim, C. Kirker-Head, and D. L. Kaplan, Biomaterials, 29, 3415 (2008).CrossRefGoogle Scholar
  24. (24).
    J. Jin, J. Wang, J. Huang, F. Huang, J. Fu, X. Yang, and Z. Miao, J. Biosci. Bioeng., 118, 593 (2014).CrossRefGoogle Scholar
  25. (25).
    B. Kundu, R. Rajkhowa, S. C. Kundu, and X. Wang, Adv. Drug Deliv. Rev., 65, 457 (2013).CrossRefGoogle Scholar
  26. (26).
    M. Demoor, D. Ollitrault, T. Gomez-Leduc, M. Bouyoucef, M. Hervieu, H. Fabre, J. Lafont, J. M. Denoix, F. Audigie, F. Mallein-Gerin, F. Legendre, and P. Galera, Biochim. Biophys. Acta, 1840, 2414 (2014).CrossRefGoogle Scholar
  27. (27).
    Q. Han, L. Fan, B. C. Heng, and Z. Ge, Int. J. Tissue Regen., 4, 61 (2013).Google Scholar
  28. (28).
    E. G. Khaled, M. Saleh, and S. Hindocha, Open Orthop. J., 5, 289 (2011).CrossRefGoogle Scholar
  29. (29).
    Yannas IV, Clin. Mater., 9, 179 (1992).CrossRefGoogle Scholar
  30. (30).
    Q. Zhang, H. Lu, N. Kawazoe, and G. Chen, Acta Biomater., 10, 2005 (2014).CrossRefGoogle Scholar
  31. (31).
    T. A. Kelly, B. L. Roach, Z. D. Weidner, C. R. Mackenzie-Smith, G. D. O’Connell, E. G. Lima, A. M. Stoker, J. L. Cook, G. A. Ateshian, and C. T. Hung, J. Biomech., 46, 1784 (2013).CrossRefGoogle Scholar
  32. (32).
    Y. Zhang, C. Wu, T. Friis, and Y. Xiao, Biomaterials, 31, 2848 (2010).CrossRefGoogle Scholar

Copyright information

© The Polymer Society of Korea and Springer Sciene+Business Media Dordrecht 2015

Authors and Affiliations

  • Kap-Soo Han
    • 1
  • Jeong Eun Song
    • 2
  • Nirmalya Tripathy
    • 2
  • Hyeongseok Kim
    • 2
  • Bo Mi Moon
    • 3
  • Chan Hum Park
    • 3
  • Gilson Khang
    • 2
    Email author
  1. 1.School of MedicineChonbuk National Univ. Medical SchoolJeonjuKorea
  2. 2.Department of BIN Fusion Tech., Polymer Fusion Res. Center & Dept. of Polymer·Nano Sci TechChonbuk National Univ.JeonjuKorea
  3. 3.Nano-Bio Regenerative Medical InstituteHallym UniversityChuncheonKorea

Personalised recommendations