Macromolecular Research

, Volume 23, Issue 12, pp 1112–1116

Gelation dynamics of ionically crosslinked alginate gel with various cations

Article

Abstract

Alginates can be crosslinked with multivalent cations, leading eventually to hydrogel formation. The properties of alginate gel depend on its lock structure, monomeric composition, concentration of polymer and cross linker. Among these, the properties of ionically crosslinked alginate gel can be greatly affected by multivalent cations as cross-linker. Knowledge of gelation dynamics by multivalent cations allows control over gelation characteristics, such as modulus of gel and the time required for equilibrium state, and healing properties. We have studied gelation dynamics of ionically crosslinked alginate gel. According to different types of anions bound with cations, gelation time and equilibrium viscosity was changed due to the solubility kinetics of the cation. The equilibrium viscosity is increased as the size of the cations increased even though the cations have same valency. A theoretical model is introduced to interpret dynamic change of viscosity during gelation.

Keywords

alginate multivalent cations toughness gelation dynamics ionically crosslinked 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. (1).
    L. Shapiro and S. Cohen, Biomaterials, 18, 583 (1997).CrossRefGoogle Scholar
  2. (2).
    O. Smidsrød, Trends Biotechnol., 8, 71 (1990).CrossRefGoogle Scholar
  3. (3).
    W. R. Gombotz and S. F. Wee, Adv. Drug Deliv. Rev., 64, 194 (2012).CrossRefGoogle Scholar
  4. (4).
    G. Klöck, A. Pfeffermann, C. Ryser, P. Gröhn, B. Kuttler, H. Hahn, and U. Zimmermann, Biomaterials, 18, 707 (1997).CrossRefGoogle Scholar
  5. (5).
    J. Y. Sun, X. Zhao, W. R. Illeperuma, O. Chaudhuri, K. H. Oh, D. J. Mooney, J. J. Vlassak, and Z. Suo, Nature, 489, 133 (2012).CrossRefGoogle Scholar
  6. (6).
    J. L. Drury and D. J. Mooney, Biomaterials, 24, 4337 (2003).CrossRefGoogle Scholar
  7. (7).
    Y. Qiu and K. Park, Adv. Drug Deliv. Rev., 53, 321 (2001).CrossRefGoogle Scholar
  8. (8).
    P. Calvert, Adv. Mater., 21, 743 (2009).CrossRefGoogle Scholar
  9. (9).
    D. J. Huey, J. C. Hu, and K. A. Athanasiou, Science, 338, 917 (2012).CrossRefGoogle Scholar
  10. (10).
    G. Lake and A. Thomas, Proc. R. Soc. Lond. A, 300, 108 (1967).CrossRefGoogle Scholar
  11. (11).
    J. P. Gong, Y. Katsuyama, T. Kurokawa, and Y. Osada, Adv. Mater., 15, 1155 (2003).CrossRefGoogle Scholar
  12. (12).
    M. C. Darnell, J. Y. Sun, M. Mehta, C. Johnson, P. R. Arany, Z. Suo, and D. J. Mooney, Biomaterials, 34, 8042 (2013).CrossRefGoogle Scholar
  13. (13).
    C. H. Yang, M. X. Wang, H. Haider, J. H. Yang, J. Y. Sun, Y. M. Chen, J. Zhou, and Z. Suo, ACS Appl. Mater. Inter., 5, 10418 (2013).CrossRefGoogle Scholar
  14. (14).
    Ý. A. Mørch, I. Donati, B. L. Strand, and G. Skjåk-Bræk, Biomacromolecules, 7, 1471 (2006).CrossRefGoogle Scholar
  15. (15).
    T. Bryce, A. McKinnon, E. Morris, D. Rees, and D. Thom, Faraday Discuss. Chem. Soc., 57, 221 (1974).CrossRefGoogle Scholar
  16. (16).
    I. Braccini and S. Pérez, Biomacromolecules, 2, 1089 (2001).CrossRefGoogle Scholar
  17. (17).
    G. T. Grant, E. R. Morris, D. A. Rees, P. Smith, and D. Thom, FEBS Lett., 32, 195 (1973).CrossRefGoogle Scholar
  18. (18).
    A. Haug and O. Smidsrod, Acta Chem. Scand., 19, 341 (1965).CrossRefGoogle Scholar
  19. (19).
    A. Haug and O. Smidsrod, Acta Chem. Scand., 24, 843 (1970).CrossRefGoogle Scholar
  20. (20).
    N. Izumo and A. Koiwai, in Proceedings of Asia-Pacific Symposium on Measurement of Mass, Force and Torque, APMF 2009, Tokyo, 2009, pp 1–4.Google Scholar
  21. (21).
    R. van Keer and J. Kacur, Math. Probl. Eng., 4, 115 (1998).CrossRefGoogle Scholar
  22. (22).
    A. Blandino, M. Macias, and D. Cantero, J. Biosci. Bioeng., 88, 686 (1999).CrossRefGoogle Scholar
  23. (23).
    J. Chrastil, J. Agric. Food Chem., 39, 874 (1991).CrossRefGoogle Scholar
  24. (24).
    J. Chrastil, Int. J. Biochem., 20, 683 (1988).CrossRefGoogle Scholar
  25. (25).
    M. Awad and Y. Muzychka, Exp. Therm. Fluid Sci., 33, 106 (2008).CrossRefGoogle Scholar

Copyright information

© The Polymer Society of Korea and Springer Sciene+Business Media Dordrecht 2015

Authors and Affiliations

  1. 1.Department of Materials Science and EngineeringSeoul National UniversitySeoulKorea
  2. 2.Research Institute of Advanced Materials (RIAM)Seoul National UniversitySeoulKorea
  3. 3.Department of Mechanical System EngineeringHansung UniversitySeoulKorea
  4. 4.Center for Advanced Functional MaterialsKorea Institute of Science and TechnologySeoulKorea

Personalised recommendations