Macromolecular Research

, Volume 23, Issue 8, pp 713–718 | Cite as

Electrical and mechanical properties of polyethylene/MWCNT composites produced by polymerization using Cp2ZrCl2 supported on MWCNTs

  • Seung Woong Yoon
  • Seungjun Lee
  • Insung S. Choi
  • Youngkyu Do
  • Sungjin Park


Pristine multiwalled carbon nanotube (MWCNT)/polyethylene (PE) composites produced by in situ polymerization using a metallocene (Cp2ZrCl2) immobilized onto MWCNT are used for measurement of electrical, thermo- and dynamic mechanical properties. As the content of MWCNT in the composites increased, electrical resistivity decreased and heat distortion temperature (HDT) and storage modulus increased due to well-dispersed CNT strands in the PE matrix. The lowest average electrical surface and volume resistivities were 1.0×1010 Ω and 4.1×109 Ω·cm, respectively and this result was supported by electrostatic force microscopy (EFM). In practical point of view, decrease of electrical resistivity of the composites is highly important in fabrication of antistatic polyolefin products including PEs in this study.


carbon nanotubes polymer composites electrical properties thermomechanical properties metallocene catalyst 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. (1).
    S. Iijima, Nature, 354, 56 (1991).CrossRefGoogle Scholar
  2. (2).
    J. N. Coleman, U. Khan, W. J. Blau, and Y. K. Gun’ko, Carbon, 44, 1624 (2006).CrossRefGoogle Scholar
  3. (3).
    X. Li, H. Gao, W. A. Scrivens, D. Fei, X. Xu, M. A. Sutton, A. P. Reynolds, and M. L. Myrick, Nanotechnology, 15, 1416 (2004).CrossRefGoogle Scholar
  4. (4).
    Y. S. Song and J. R. Youn, Carbon, 43, 1378 (2005).CrossRefGoogle Scholar
  5. (5).
    Y. Li, K. Wang, J. Wei, Z. Gu, Q. Shu, C. Li, W. Wang, Z. Wang, J. Luo, and D. Wu, Carbon, 44, 158 (2006).CrossRefGoogle Scholar
  6. (6).
    A. T. Seyhan, F. H. Gojny, M. Tanoglu, and K. Schulte, Eur. Polym. J., 43, 374 (2007).CrossRefGoogle Scholar
  7. (7).
    Z. Meng, W. Zheng, M. Ding, H. Zhou, X. Chen, J. Chen, M. Liu, and Y. Zheng, J. Nanosci. Nanotechnol., 11, 3126 (2011).CrossRefGoogle Scholar
  8. (8).
    C. McClory, T. McNally, G. P. Brennan, and J. Erskine, J. Appl. Polym. Sci., 105, 1003 (2007).CrossRefGoogle Scholar
  9. (9).
    L. V. Karabanova, R. L. Whitby, A. Korobeinyk, O. Bondaruk, J. P. Salvage, A. W. Lloyd, and S. V. Mikhalovsky, Compos. Sci. Technol., 72, 865 (2012).CrossRefGoogle Scholar
  10. (10).
    S. W. Choi, K. H. Yoon, and S. Jeong, Compos. Part A: Appl. Sci. Manuf., 45, 1 (2013).CrossRefGoogle Scholar
  11. (11).
    A. Dasari, Z. Yu, and Y. Mai, Polymer, 50, 4112 (2009).CrossRefGoogle Scholar
  12. (12).
    P. Song, L. Liu, G. Huang, S. Fu, Y. Yu, and Q. Guo, Ind. Eng. Chem. Res., 52, 14384 (2013).CrossRefGoogle Scholar
  13. (13).
    P. Harris, Int. Mater. Rev., 49, 31 (2004).CrossRefGoogle Scholar
  14. (14).
    J. N. Coleman, U. Khan, and Y. K. Gun’ko, Adv. Mater., 18, 689 (2006).CrossRefGoogle Scholar
  15. (15).
    M. Moniruzzaman and K. I. Winey, Macromolecules, 39, 5194 (2006).CrossRefGoogle Scholar
  16. (16).
    D. Tasis, N. Tagmatarchis, A. Bianco, and M. Prato, Chem. Rev., 106, 1105 (2006).CrossRefGoogle Scholar
  17. (17).
    D. Qian, E. C. Dickey, R. Andrews, and T. Rantell, Appl. Phys. Lett., 76, 2868 (2000).CrossRefGoogle Scholar
  18. (18).
    M. Okamoto, T. Fujigaya, and N. Nakashima, Adv. Funct. Mater., 18, 1776 (2008).CrossRefGoogle Scholar
  19. (19).
    M. Islam, E. Rojas, D. Bergey, A. Johnson, and A. Yodh, Nano Lett., 3, 269 (2003).CrossRefGoogle Scholar
  20. (20).
    S. Barrau, P. Demont, E. Perez, A. Peigney, C. Laurent, and C. Lacabanne, Macromolecules, 36, 9678 (2003).CrossRefGoogle Scholar
  21. (21).
    J. Su, Q. Wang, R. Su, K. Wang, Q. Zhang, and Q. Fu, J. Appl. Polym. Sci., 107, 4070 (2008).CrossRefGoogle Scholar
  22. (22).
    A. R. Bhattacharyya, T. Sreekumar, T. Liu, S. Kumar, L. M. Ericson, R. H. Hauge, and R. E. Smalley, Polymer, 44, 2373 (2003).CrossRefGoogle Scholar
  23. (23).
    D. Wu, Y. Sun, L. Wu, and M. Zhang, J. Appl. Polym. Sci., 108, 1506 (2008).CrossRefGoogle Scholar
  24. (24).
    D. Bonduel, M. Mainil, M. Alexandre, F. Monteverde, and P. Dubois, Chem. Commun., 781 (2005).Google Scholar
  25. (25).
    K. Wiemann, W. Kaminsky, F. H. Gojny, and K. Schulte, Macromol. Chem. Phys., 206, 1472 (2005).CrossRefGoogle Scholar
  26. (26).
    J. Jeong, H. Lee, S. Kang, L. Tan, and J. Baek, J. Polym. Sci. A, 46, 6041 (2008).CrossRefGoogle Scholar
  27. (27).
    S. Badaire, P. Poulin, M. Maugey, and C. Zakri, Langmuir, 20, 10367 (2004).CrossRefGoogle Scholar
  28. (28).
    M. Bryning, D. Milkie, M. Islam, J. Kikkawa, and A. Yodh, Appl. Phys. Lett., 87, 161909 (2005).CrossRefGoogle Scholar
  29. (29).
    C. A. Dyke and J. M. Tour, J. Phys. Chem. A, 108, 11151 (2004).CrossRefGoogle Scholar
  30. (30).
    B. Yang, K. P. Pramoda, G. Q. Xu, and S. H. Goh, Adv. Funct. Mater., 17, 2062 (2007).CrossRefGoogle Scholar
  31. (31).
    G. Lee, S. Jagannathan, H. G. Chae, M. L. Minus, and S. Kumar, Polymer, 49, 1831 (2008).CrossRefGoogle Scholar
  32. (32).
    S. Park, S. W. Yoon, K. Lee, D. J. Kim, Y. H. Jung, Y. Do, H. Paik, and I. S. Choi, Macromol. Rapid Commun., 27, 47 (2006).CrossRefGoogle Scholar
  33. (33).
    S. Park, S. W. Yoon, H. Choi, J. S. Lee, W. K. Cho, J. Kim, H. J. Park, W. S. Yun, C. H. Choi, and Y. Do, Chem. Mater., 20, 4588 (2008).CrossRefGoogle Scholar
  34. (34).
    C. A. Harper, Handbook of Plastics and Elastomers, McGraw-Hill, New York, 1975.Google Scholar
  35. (35).
    W. J. Lee, U. N. Maiti, J. M. Lee, J. Lim, T. H. Han, and S. O. Kim, Chem. Commun., 50, 6818 (2014).CrossRefGoogle Scholar
  36. (36).
    U. N. Maiti, W. J. Lee, J. M. Lee, Y. Oh, J. Y. Kim, J. E. Kim, J. Shim, T. H. Han, and S. O. Kim, Adv. Mater, 26, 40 (2014).CrossRefGoogle Scholar
  37. (37).
    A. Rasheed, H. G. Chae, S. Kumar, and M. D. Dadmun, Polymer, 47, 4734 (2006).CrossRefGoogle Scholar
  38. (38).
    Y. Bin, M. Mine, A. Koganemaru, X. Jiang, and M. Matsuo, Polymer, 47, 1308 (2006).CrossRefGoogle Scholar
  39. (39).
    Y. Zeng, P. Liu, J. Du, L. Zhao, P. M. Ajayan, and H. Cheng, Carbon, 48, 3551 (2010).CrossRefGoogle Scholar
  40. (40).
    E. C. Culbertson, US Patent 4 642 263 (1987).Google Scholar
  41. (41).
    R. Neal and R. Ray, US Patent 4 529 087 (1985).Google Scholar
  42. (42).
    S. J. Monte, US Patent 5 659 058 (1997).Google Scholar
  43. (43).
    A. Peacock, Handbook of Polyethylene: Structures: Properties, and Applications, CRC Press, New York, 2000.Google Scholar
  44. (44).
    B. Wunderlich, in Macromolecular Physics, Academic Press, New York, 1980, Vol. 3.Google Scholar
  45. (45).
    J. N. Coleman, M. Cadek, R. Blake, V. Nicolosi, K. P. Ryan, C. Belton, A. Fonseca, J. B. Nagy, Y. K. Gun’ko, and W. J. Blau, Adv. Funct. Mater., 14, 791 (2004).CrossRefGoogle Scholar
  46. (46).
    T. Chang, A. Kisliuk, S. Rhodes, W. Brittain, and A. Sokolov, Polymer, 47, 7740 (2006).CrossRefGoogle Scholar
  47. (47).
    M. Trujillo, M. Arnal, A. J. Müller, S. Bredeau, D. Bonduel, P. Dubois, I. Hamley, and V. Castelletto, Macromolecules, 41, 2087 (2008).CrossRefGoogle Scholar
  48. (48).
    J. Jin, M. Song, and F. Pan, Thermochim. Acta, 456, 25 (2007).CrossRefGoogle Scholar
  49. (49).
    F. J. Stadler, J. Kaschta, and H. Münstedt, Polymer, 46, 10311 (2005).CrossRefGoogle Scholar
  50. (50).
    M. Cadek, J. Coleman, K. Ryan, V. Nicolosi, G. Bister, A. Fonseca, J. Nagy, K. Szostak, F. Beguin, and W. Blau, Nano Lett., 4, 353 (2004).CrossRefGoogle Scholar

Copyright information

© The Polymer Society of Korea and Springer Sciene+Business Media Dordrecht 2015

Authors and Affiliations

  • Seung Woong Yoon
    • 1
    • 2
  • Seungjun Lee
    • 3
  • Insung S. Choi
    • 1
  • Youngkyu Do
    • 1
  • Sungjin Park
    • 3
  1. 1.Department of ChemistryKAISTDaejeonKorea
  2. 2.Daedeok Research InstituteHonam Petrochemical CorporationDaejeonKorea
  3. 3.Department of Chemistry and Chemical EngineeringInha UniversityIncheonKorea

Personalised recommendations