Advertisement

Macromolecular Research

, Volume 23, Issue 7, pp 628–635 | Cite as

Preparation of poly{styene-co-4-(4-vinylphenoxy) phthalonitrile} nicrospheres by a new approach of “co-dissolution” and its function development

  • Qi Bian
  • Kai Qiu
  • Jiaojian Liu
  • Yancun Niu
  • Yancui Liu
  • Jianghuai Hu
  • Ke ZengEmail author
  • Gang YangEmail author
Article
  • 129 Downloads

Abstract

Solid vinyl monomer with functional group “phthalonitrile” was successfully introduced into microspheres to make poly{styene-co-4-(4-vinylphenoxy) phthalonitrile} microspheres (PSPMs) with uniform (UPSPMs) and core-shell (core-shell PSPMs) structure using soap-free emulsion polymerization by the new approach of “codissolution”. The core-shell PSPMs then were used as the design platform to make metallophthalocyanine-containing microspheres. EA, FTIR, SEM, TEM, UV-vis, TGA, XPS, solid 1H NMR and XRD techniques were employed to analyze the formation and morphology of PSPMs and metallophthalocyanine-containing microspheres. The results showed that UPSPMs and core-shell PSPMs were both realized and they were regular sphericities with diameters of around 370 nm. The percentages of reacting weight of 4-(4-vinylphenoxy) phthalonitrile were close to 50%. Based on the design platform of core-shell PSPMs, metallophthalocyanine-containing microspheres could be obtained and the content of metallophthalocyanine was close to 19%.

Keywords

microsphere co-dissolution design platform phthalocyanine 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Supplementary material

13233_2015_3090_MOESM1_ESM.pdf (235 kb)
Supplementary material, approximately 236 KB.

References

  1. (1).
    C. H. Choi, J. H. Jung, T. S. Hwang, and C. S. Lee, Macromol. Res., 17, 163 (2009).CrossRefGoogle Scholar
  2. (2).
    H. Jung, K. Lee, S. E. Shim, S. Yang, J. M. Lee, H. Lee, and S. Choe, Macromol. Res., 12, 512 (2004).CrossRefGoogle Scholar
  3. (3).
    I. W. Cheong, J. S. Shin, J. H. Kim, and S. J. Lee, Macromol. Res., 12, 225 (2004).CrossRefGoogle Scholar
  4. (4).
    C. L. Han, D. F. Zhao, C. H. Deng, and K. H. Hu, Mater. Lett., 70, 70 (2012).CrossRefGoogle Scholar
  5. (5).
    L. Hao, H. Yang, and Z. L. Lei, Mater. Lett., 70, 83 (2012).CrossRefGoogle Scholar
  6. (6).
    D. L. Wang, M. M. Chen, C. Y. Wang, J. Bai, and J. M. Zheng, Mater. Lett., 65, 1069 (2011).CrossRefGoogle Scholar
  7. (7).
    Y. Y. Yin, M. Chen, S. X. Zhou, and L. M. Wu, Mater. Chem., 22, 11245 (2012).CrossRefGoogle Scholar
  8. (8).
    S. N. Wang, M. C. Zhang, and W. Q. Zhang, ACS Catal., 1, 207 (2011).CrossRefGoogle Scholar
  9. (9).
    Z. L. Zhang, H. W. Che, Y. L. Wang, J. J. Gao, Y. Ping, and Z. Y. Zhong, and F. B. Su, Chem. Eng. J., 211-212, 421 (2012).CrossRefGoogle Scholar
  10. (10).
    S. Banerjee, L. Siddiqui, S. S. Bhattacharya, S. Kaity, A. Ghosh, P. Chattopadhyay, A. Pandey, and L. Singh, Int. J. Biol. Macromol., 50, 198 (2012).CrossRefGoogle Scholar
  11. (11).
    W. Z. Shan, L. F. Hu, X. Lin, M. Chen, and L. M. Wu, J. Mater. Chem, 22, 17671 (2012).CrossRefGoogle Scholar
  12. (12).
    Y. Liu and X. G. Zhang, Solid State Ionics, 231, 63 (2013).CrossRefGoogle Scholar
  13. (13).
    T. Zhang, X. F. Zhang, X. J. Yan, L. Y. Kong, G. C. Zhang, and H. O. Liu, S. Qiu, and K. L. Yeung, Chem. Eng. J., 228, 398 (2013).CrossRefGoogle Scholar
  14. (14).
    Z. M. Zhu, F. Q. Sun, L. T. Yang, K. Y. Gu, and W. S. Li, Chem. Eng. J., 223, 395 (2013).CrossRefGoogle Scholar
  15. (15).
    D. M. Chen, W. Li, Y. R. Wu, Q. Zhu, Z. J. Lu, and G. X. Du, Chem. Eng. J., 221, 8 (2013).CrossRefGoogle Scholar
  16. (16).
    Y. L. Tai, L. Wang, J. M. Gao, W. B. Ding, and H. J. Yu, J. Colloid Interface Sci., 360, 731 (2011).CrossRefGoogle Scholar
  17. (17).
    D. C. Blackley, Emulsion polymerization [M]. London: Applied Science Published Limited, 1975.Google Scholar
  18. (18).
    Y. Li, J. F. Chen, and Q. Xu, J. Phys. Chem. C, 113, 10085 (2009).CrossRefGoogle Scholar
  19. (19).
    G. H. Li, G. C. Zhang, J. J. Ge, J. W. Shen, and P. Jiang, J. Mater. Eng., 8, 97 (2014).Google Scholar
  20. (20).
    K. Zeng and G. Yang, in Phthalonitrile Matrix Resins and Composites, Wiley Encyclopedia of Composites 2nd, John Wiley & Sons, Inc., Publishers, New York, 2012, pp 1–14.Google Scholar
  21. (21).
    K. Zeng, H. B. Hong, S. H. Zhou, and D. M. Wu, P. K. Miao, Z. F. Huang, and G. Yang, Polymer, 50, 5002 (2009).CrossRefGoogle Scholar
  22. (22).
    K. Zeng, L. Li, S. R. Xiang, Y. Zhou, and G. Yang, Polym. Bull., 68, 1879 (2012).CrossRefGoogle Scholar
  23. (23).
    D. M. Wu, Y. C. Zhao, K. Zeng, and G. Yang, J. Polym. Sci. Part A: Polym. Chem, 50, 4977 (2012).CrossRefGoogle Scholar
  24. (24).
    Y. Huang, D. Z. Zhang, L. Hao, C. W. Su, Z. D. Xu, J. Functional Polymers(in Chinese), 13, 182 (2000).Google Scholar
  25. (25).
    A. V. Raghu, G. S. Gadaginamath, M. Priya, P. Seema, H. M. Jeong, and T. M. Aminabhavi, J. Appl. Polym. Sci., 110, 2315 (2008).CrossRefGoogle Scholar
  26. (26).
    A. V. Raghu, H. M. Jeong, J. H. Kim, Y. R. Lee, and Y. B. Cho, Marcomol. Res., 16, 194 (2008).Google Scholar
  27. (27).
    D. Wöhrle, N. Iskander, and G. Graschew, Photochem. Photobiol., 51, 351 (1990).CrossRefGoogle Scholar
  28. (28).
    P. D. Fuqua, B. Duann, and I. Zink, J. Sol-Gel Sci. Technol., 11, 241 (1998).CrossRefGoogle Scholar
  29. (29).
    M. Biswas, and S. K. Das, Eur. Polym. J., 17, 1245 (1981).CrossRefGoogle Scholar
  30. (30).
    C. Y. Gao, X. Zhang, D. S. Zheng, X. Y. He, F. J. Zhang, Spectroscopy and Spectral Analysis, 24, 502 (2004).Google Scholar

Copyright information

© The Polymer Society of Korea and Springer Sciene+Business Media Dordrecht 2015

Authors and Affiliations

  1. 1.State Key Laboratory of Polymer Materials Engineering, College of Polymer Science and EngineeringSichuan UniversityChengduChina

Personalised recommendations