Advertisement

Macromolecular Research

, Volume 23, Issue 4, pp 360–366 | Cite as

Application of synthesized anion and cation exchange polymers to membrane capacitive deionization (MCDI)

  • Ji Sun Kim
  • Cheong Seek Kim
  • Hyun Soo Shin
  • Ji Won RhimEmail author
Articles

Abstract

In this study, sulfonated poly(phenylene oxide) (SPPO) and aminated polysulfone (APSf) were synthesized for use as a cation exchange polymer and an anion exchange polymer respectively. The resulting ion exchange capacities of SPPO and APSf of 0.93 and 1.0 respectively were almost equivalent to each other. Then the ion exchange polymers were coated onto the surface of commercial carbon electrodes. Membrane capacitive deionization (MCDI) performance using these coated electrodes was tested under various operating conditions such as adsorption/desorption time, feed flow rate, and feed NaCl concentration and compared with capacitive deionization (CDI) under the same conditions. The experimental results indicate that the effluent concentration during desorption becomes higher with increased adsorption time and a lower feed flow rate. Also it was shown that the introduction of both cation and anion exchange polymers was effective in preventing the “co-ion” effect. With MCDI, a salt removal efficiency of 100% was obtained under the conditions of 5 min/1 min adsorption/desorption time and 23 mL/min feed flow rate, while with CDI the salt removal efficiency was less than 40% under the same conditions.

Keywords

membrane capacitive deionization aminated polysulfone sulfonated poly(phenylene oxide) capacitive deionization (CDI) membrane capacitive deionization (MCDI) 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. (1).
    D. D. Caudle, J. H. Tucker, J. L. Cooper, B. B. Arnold, and A. Papastamataki, Electrochemical Demineralization of Water with Carbon Electrodes, Research Report, Oklahoma University Research Institute, 1966.Google Scholar
  2. (2).
    H. Li and L. Zou, Desalination, 275, 62 (2011).CrossRefGoogle Scholar
  3. (3).
    J.-Y. Lee, S.-J. Seo, S.-H. Yun, and S.-H. Moon, Water Res., 45, 5375 (2011).CrossRefGoogle Scholar
  4. (4).
    F. A. AlMarzooqi, A. A. Al Ghaferi, I. Saadat, and N. Hilal, Desalination, 342, 3 (2014).CrossRefGoogle Scholar
  5. (5).
    Y.-J. Kim and J.-H. Choi, Sep. Purif. Technol., 71, 70 (2010).CrossRefGoogle Scholar
  6. (6).
    P. M. Biesheuvel and A. van der Wal, J. Membr. Sci., 346, 256 (2010).CrossRefGoogle Scholar
  7. (7).
    R. Zhao, O. Satpradit, H. H. M. Rijnaarts, P. M. Biesheuvel, and A. van der Wal, Water Res., 47, 1941 (2013).CrossRefGoogle Scholar
  8. (8).
    P. M. Biesheuvel, J. Colloid Interface Sci., 332, 258 (2009).CrossRefGoogle Scholar
  9. (9).
    J.-B. Lee, K.-K. Park, H.-M. Eum, and C.-W. Lee, Desalination, 196, 125 (2006).CrossRefGoogle Scholar
  10. (10).
    J.-S. Kim and J.-H. Choi, J. Membr. Sci., 355, 85 (2010).CrossRefGoogle Scholar
  11. (11).
    Y. Liu, L. Pan, X. Xu, T. Lu, Z. Sun, and D. H. C. Chua, Electrochim. Acta, 130, 619 (2014).CrossRefGoogle Scholar
  12. (12).
    K. Laxman, M. T. Z. Myint, H. Bourdoucen, and J. Dutta, ACS Appl. Mater. Interfaces, 6, 20113 (2014).CrossRefGoogle Scholar
  13. (13).
    H. Li, Y. Gao, L. Pan, Y. Zhang, Y. Chen, and Z. Sun, Water Res., 42, 4923 (2008).CrossRefGoogle Scholar
  14. (14).
    R. Y. M. Huang and J. J. Kim, J. Appl. Polym. Sci., 29, 4017 (1984).CrossRefGoogle Scholar
  15. (15).
    B. Kruczek and T. Matsuura, J. Membr. Sci., 146, 263 (1998).CrossRefGoogle Scholar
  16. (16).
    J. W. Rhim, G. Chowdhury, and T. Matsuura, J. Appl. Polym. Sci., 76, 735 (2000).CrossRefGoogle Scholar
  17. (17).
    E. N. Komkova, D. F. Stamatialis, H. Strathmann, and M. Wessling, J. Membr. Sci., 244, 25 (2004).CrossRefGoogle Scholar
  18. (18).
    J. S. Kim, E. H. Cho, J. W. Rhim, C. J. Park, and S. G. Park, Membrane Water Treatment, Accepted 2015.Google Scholar
  19. (19).
    J. W. Rhim, H. B. Park, C. S. Lee, J. H. Jun, and Y. M. Lee, J. Membr. Sci., 238, 143 (2004).CrossRefGoogle Scholar
  20. (20).
    A. E. Greenberg, R. R. Trussel, and L. S. Clesceri, Standard Methods for the Examination of Water and Wastewater, American Public Health Association, 298 (1985).Google Scholar
  21. (21).
    J.-H. Lee, W.S. Bae, and J.-H. Choi, Desalination, 258, 159 (2010).CrossRefGoogle Scholar
  22. (22).
    T. Xu, J. Membr. Sci., 263, 1 (2005).CrossRefGoogle Scholar
  23. (23).
    P. M. Biesheuvel, B. van Limpt, and A. van der Wal, J. Phys. Chem., 113, 5636 (2009).Google Scholar
  24. (24).
    Y.-J Kim and J.-H Choi, Water Res., 44, 990 (2010).CrossRefGoogle Scholar
  25. (25).
    Y. Zhao, Y. Wang, R. Wang, Y. Wu, S. Xu, and J. Wang, Desalination, 324, 127 (2013).CrossRefGoogle Scholar
  26. (26).
    H. Li, C. Nie, L. Pan, and Z. Sun, Desalination Water Treat., 42, 210 (2012).CrossRefGoogle Scholar
  27. (27).
    P. Liang, L. Yuan, X. Yang, S. Zhou, and X. Huang, Water Res., 47, 2523 (2013).CrossRefGoogle Scholar

Copyright information

© The Polymer Society of Korea and Springer Sciene+Business Media Dordrecht 2015

Authors and Affiliations

  • Ji Sun Kim
    • 1
  • Cheong Seek Kim
    • 2
  • Hyun Soo Shin
    • 2
  • Ji Won Rhim
    • 1
    Email author
  1. 1.Department of Chemical EngineeringHannam UniversityDaejeonKorea
  2. 2.TECHWIN Co., R & D CenterCheongju, ChungbukKorea

Personalised recommendations