Advertisement

Macromolecular Research

, Volume 23, Issue 2, pp 145–148 | Cite as

Directional step flow across ridges on multiscale two-face prism array

  • Hyunsik Yoon
  • Seung Hyun Sung
  • Jai Hyun Koh
  • Sang Moon Kim
  • Se-Jin Choi
  • Kahp Y. Suh
  • Kookheon Char
Articles

Abstract

Directional wetting or spreading on asymmetric structures have received much attention because of their potential to control the liquid flow in microfluidic devices. Although there have been many reports on directional liquid flows, the flow speeds of the directional flows could not be predicted. Here, we present a controllable strategy for directional flow on a multiscale two-face prism array, one face is smooth and the other face is roughened. The polymeric surface of the prism is roughened by oxygen plasma while the other side is blocked by a coated metal film. With the designed structure, we demonstrate a unidirectional liquid flow and manipulate the flow speed in an open channel. From a simplified model suggested here, the flow speed could be predicted quantitatively.

Keywords

prism directional flow polymer microfluidics contact angle 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. (1).
    K.-H. Chu, R. Xiao, and E. N. Wang, Nat. Mater., 9, 413 (2010).CrossRefGoogle Scholar
  2. (2).
    T.-I. Kim and K. Y. Suh, Soft Matter, 5, 4131 (2009).CrossRefGoogle Scholar
  3. (3).
    N. A. Malvadkar, M. J. Hancock, K. Sekeroglu, W. J. Dressick, and M. C. Demirel, Nat. Mater., 9, 1023 (2010).CrossRefGoogle Scholar
  4. (4).
    S. Daniel, S. Sircar, J. Gliem, and M. K. Chaudhury, Langmuir, 20, 4085 (2004).CrossRefGoogle Scholar
  5. (5).
    Y. Zheng, H. Bai, Z. Huang, X. Tian, F.-Q. Nie, Y. Zhao, J. Zhai, and L. Jiang, Nature, 463, 640 (2010).CrossRefGoogle Scholar
  6. (6).
    M. Prakash, D. Quéré, and J. W. Bush, Science, 320, 931 (2008).CrossRefGoogle Scholar
  7. (7).
    S. M. Kim, D. H. Kang, J. H. Koh, H. S. Suh, H. Yoon, K.-Y. Suh, and K. Char, Soft Matter, 9, 4145 (2013).CrossRefGoogle Scholar
  8. (8).
    S.-J. Choi, M. K. Choi, D. Tahk, and H. Yoon, J. Mater. Chem., 21, 14936 (2011).CrossRefGoogle Scholar
  9. (9).
    H. Yoon, S.-G. Oh, D. S. Kang, J. M. Park, S. J. Choi, K. Y. Suh, K. Char, and H. H. Lee, Nat. Commun., 2, 455 (2011).CrossRefGoogle Scholar
  10. (10).
    H. Yoon, H. E. Jeong, T.-I. Kim, T. J. Kang, D. Tahk, K. Char, and K. Y. Suh, Nano Today, 4, 385 (2009).CrossRefGoogle Scholar
  11. (11).
    Y. Choi, S. Hong, and L. P. Lee, Nano Lett., 9, 3726 (2009).CrossRefGoogle Scholar
  12. (12).
    J. Oliver, C. Huh, and S. Mason, J. Colloid Interface Sci., 59, 568 (1977).CrossRefGoogle Scholar
  13. (13).
    F.-M. Chang, S.-J. Hong, Y.-J. Sheng, and H.-K. Tsao, J. Phys. Chem. C, 114, 1615 (2010).CrossRefGoogle Scholar
  14. (14).
    D. Quéré, Annu. Rev. Mater. Res., 38, 71 (2008).CrossRefGoogle Scholar
  15. (15).
    N. Verplanck, Y. Coffinier, V. Thomy, and R. Boukherroub, Nanoscale Res. Lett., 2, 577 (2007).CrossRefGoogle Scholar
  16. (16).
    E. Ueda and P. A. Levkin, Adv. Mater., 25, 1234 (2013).CrossRefGoogle Scholar
  17. (17).
    S. Nishimoto and B. Bhushan, R. Soc. Chem. Adv., 3, 671 (2013).Google Scholar

Copyright information

© The Polymer Society of Korea and Springer Sciene+Business Media Dordrecht 2015

Authors and Affiliations

  • Hyunsik Yoon
    • 1
  • Seung Hyun Sung
    • 2
  • Jai Hyun Koh
    • 2
  • Sang Moon Kim
    • 3
  • Se-Jin Choi
    • 4
  • Kahp Y. Suh
    • 3
  • Kookheon Char
    • 2
  1. 1.Department of Chemical and Biomolecular EngineeringSeoul National University of Science & TechnologySeoulKorea
  2. 2.School of Chemical and Biological Engineering, The National Initiative Creative Research Center for Intelligent Hybrids, The WCU Program for Chemical Convergence for Energy and EnvironmentSeoul National UniversitySeoulKorea
  3. 3.School of Mechanical and Aerospace EngineeringSeoul National UniversitySeoulKorea
  4. 4.MCNet Co., Ltd.GyeonggiKorea

Personalised recommendations