Macromolecular Research

, Volume 23, Issue 1, pp 118–123 | Cite as

Patterned polydiacetylene-embedded polystyrene nanofibers based on electrohydrodynamic jet printing

  • Chiho Song
  • John A. Rogers
  • Jong-Man KimEmail author
  • Heejoon AhnEmail author


Electrohydrodynamic (EHD) jet printing is a direct-writing technique which ejects ink through a fine nozzle using an electric field, which has the advantages of high-resolution, rapid printing speed and a wide range of ink selectivity. In this article, the EHD jet printing system is utilized to print patterns of polystyrene (PS) nanofibers. The effect of parameters such as ink concentration, working distance, applied voltage, and stage speed on the diameter of the printed nanofibers was investigated. The EHD jet printing technology is further utilized to print various patterns of polydiacetylene (PDA)-embedded PS nanofibers. The EHD jet printing based nanofiber printing is advantageous over conventional electrospining based approaches in terms of patterned PDA images. In addition, an advanced EHD jet printing system which is adopted for aligned nanofiber printing will expand the application of nanofibers from bio and chemical sensors to tissue engineering and electronics.


electrohydrodynamic jet printing nanofiber patterning electrospinning polydiacetylene polystyrene 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. (1).
    Z.-M. Huang, Y.-Z. Zhang, M. Kotaki, and S. Ramakrishna, Compos. Sci. Technol., 63, 2223 (2003).CrossRefGoogle Scholar
  2. (2).
    D. Li and Y. Xia, Adv. Mater., 16, 1151, (2004).CrossRefGoogle Scholar
  3. (3).
    T. Subbiah, G. S. Bhat, R. W. Tock, S. Parameswaran, and S. S. Ramkumar, J. Appl. Polym. Sci., 96, 557 (2005).CrossRefGoogle Scholar
  4. (4).
    A. Frenot and I. S. Chronakis, Curr. Opin. Colloid Interface Sci., 8, 64 (2003).CrossRefGoogle Scholar
  5. (5).
    K. Jang, I. W. Baek, S. Y. Back, and H. Ahn, J. Nanosci. Nanotechnol., 11, 6102 (2011).CrossRefGoogle Scholar
  6. (6).
    X. Yuan, Y. Zhang, C. Dong, and J. Sheng, Polym. Int., 53, 1704 (2004).CrossRefGoogle Scholar
  7. (7).
    C. Zhang, X. Yuan, L. Wu, Y. Han, and J. Sheng, Eur. Polym. J., 41, 423 (2005).CrossRefGoogle Scholar
  8. (8).
    C. S. Ki, D. H. Baek, K. D. Gang, K. H. Lee, I. C. Um, and Y. H. Park, Polymer, 46, 5094 (2005).CrossRefGoogle Scholar
  9. (9).
    D. H Reneker and I. Chum, Nanotechnology, 7, 216 (1996).CrossRefGoogle Scholar
  10. (10).
    Z. Liu, X. Li, Y. Yang, K. Zhang, X. Wang, M. Zhu, and B. S. Hsiao, Polymer, 54, 6045 (2013).CrossRefGoogle Scholar
  11. (11).
    V. Beachley, E. Katsanevakis, N. Zhang, and X. Wen, Adv. Polym. Sci., 246, 171 (2012).CrossRefGoogle Scholar
  12. (12).
    A. Hurtado, J. M. Cregg, H. B. Wang, D. F. Wendell, M. Oudega, R. J. Gilbert, and J. W. McDonald, Biomaterials, 32, 6068 (2011).Google Scholar
  13. (13).
    Y. Wang, R. Gao, P.-P. Wang, J. Jian, X.-L. Jiang, C. Yan, X. Lin, L. Wu, G.-Q. Chen, and Q. Wu, Biometerials, 33, 485 (2012).CrossRefGoogle Scholar
  14. (14).
    J. Xie, X. Li, J. Lipner, C. N. Manning, A. G. Schwartz, S. Thomopoulos, and Y. Xia, Nanoscale, 2, 923 (2010).CrossRefGoogle Scholar
  15. (15).
    H. Wu, L. Hu, M. W. Rowell, D. Kong, J. J. Cha, J. R. McDonough, J. Zhu, Y. Yang, M. D. McGehee, and Y. Cui, Nano lett., 10, 4242 (2010).CrossRefGoogle Scholar
  16. (16).
    Y.-K. Fuh and L.-C. Lien, Nanotechnology, 24, 055301 (2013).CrossRefGoogle Scholar
  17. (17).
    M. M. Demir, B. Ozen, and S. Ozcelik, J. Phys. Chem. B, 113, 11568 (2009).CrossRefGoogle Scholar
  18. (18).
    J.-U. Park, M. Hardy, S. J. Kang, K. Barton, K. Adair, D. K. Mukhopadhyay, C. Y. Lee, M. S. Strano, A. G. Alleyne, J. G. Georgiadis, P. M. Ferreira, and J. A. Rogers, Nat. Mater., 6, 782 (2007).CrossRefGoogle Scholar
  19. (19).
    E. Sutanto, K. Shigeta, Y. K. Kim, P. G. Graf, D. J. Hoelzle, K. L. Barton, A. G. Alleyne, P. M. Ferreira, and J. A. Rogers, J. Micromech. Microeng., 22, 045008 (2012).CrossRefGoogle Scholar
  20. (20).
    K. Shigeta, Y. He, E. Sutanto, S. Kang, A.-P. Le, R. G. Nuzzo, A. G. Alleyne, P. M. Ferreira, Y. Lu, and J. A. Rogers, Anal. Chem., 84, 10012 (2012).CrossRefGoogle Scholar
  21. (21).
    C. H. Song, S. Y. Back, S. Yu, H. J. Lee, B. S. Kim, N. Y. Yang, S. H. Jeong, and H. Ahn, J. Nanosci. Nanotechnol., 12, 475 (2012).CrossRefGoogle Scholar
  22. (22).
    M. S. Onses, C. Song, L. Williamson, E. Sutanto, P. M. Ferreira, A. G. Alleyne, P. F. Nealey, H. Ahn, and J. A. Rogers, Nat. Nanotechnol., 8, 667 (2013).CrossRefGoogle Scholar
  23. (23).
    S.-Y. Min, T.-S. Kim, B. J. Kim, H. Cho, Y.-Y. Noh, H. Yang, J. H. Cho, and T.-W. Lee, Nat. Commun., 4, 1773, (2013).CrossRefGoogle Scholar
  24. (24).
    Y. Lee, T.-S. Kim, S.-Y. Min, W. Xu, S.-H. Jeong, H.-K. Seo, and T.-W. Lee, Adv. Mater., DOI:  10.1002/adma.201403559 (2014).Google Scholar
  25. (25).
    S. K. Hwang, S.-Y. Min, I. Bae, S. M. Cho, K. L. Kim, T.-W. Lee, and C. Park, Small, 10, 1976 (2014).CrossRefGoogle Scholar
  26. (26).
    G. Wegner, Makromol. Chem., 154, 35 (1972).CrossRefGoogle Scholar
  27. (27).
    S. R. Diegelmann and J. Tovar, Macromol. Rapid Commun., 34, 1343 (2013).CrossRefGoogle Scholar
  28. (28).
    O. Yarimaga, J. Jaworski, B. Yoon, and J.-M. Kim, Chem. Commun., 48, 2469 (2012).CrossRefGoogle Scholar
  29. (29).
    J. Lee, H. T. Chang, H. An, S. Ahn, J. Shim, and J.-M. Kim, Nat. Commun., 4, 2461 (2013).Google Scholar
  30. (30).
    X. Chen, G. Zhou, X. Peng, and J. Yoon, Chem. Soc. Rev., 41, 4610 (2012).CrossRefGoogle Scholar
  31. (31).
    H. Peng, X. Sun, F. Cai, X. Chen, Y. Zhu, G. Liao, D. Chen, Q. Li, Y. Lu, Y. Zhu, and Q. Jia, Nat. Nanotechnol., 4, 738 (2009).CrossRefGoogle Scholar
  32. (32).
    S. Kolusheva, R. Yossef, A. Kugel, M. Katz, R. Volinsky, M. Welt, U. Hadas, V. Drory, M. Kliger, E. Rubin, A. Porgador, and R. Jelinek, Anal. Chem., 84, 5925 (2012).CrossRefGoogle Scholar
  33. (33).
    X. Wang, X. Sun, P. A. Hu, J. Zhang, L. Wang, W. Feng, S. Lei, B. Yang, and W. Cao, Adv. Funct. Mater., 23, 6044 (2013).CrossRefGoogle Scholar
  34. (34).
    J. Lee and J. Kim, Chem. Mater., 24, 2817 (2012).CrossRefGoogle Scholar
  35. (35).
    K. M. Kim, D. J. Oh, and K. H. Ahn, Chem. Asian J., 6, 122 (2011).CrossRefGoogle Scholar
  36. (36).
    S. Ampornpun, S. Montha, G. Tumcharern, V. Vchirawongkwin, M. Sukwattanasinitt, and S. Wacharasindhu, Macromolecules, 45, 9038 (2012).CrossRefGoogle Scholar
  37. (37).
    R. H. Baughman and R. R. Chance, J. Polym. Sci. Polym. Phys. Ed., 14, 2037 (1976).CrossRefGoogle Scholar
  38. (38).
    D. J. Ahn and J.-M. Kim, Acc. Chem. Res., 41, 805 (2008).CrossRefGoogle Scholar
  39. (39).
    J. Yoon, S. K. Chae, and J.-M. Kim, J. Am. Chem. Soc., 129, 3038 (2007).CrossRefGoogle Scholar
  40. (40).
    J. Yoon, Y.-S. Jung, and J.-M. Kim, Adv. Funct. Mater., 19, 209 (2009).CrossRefGoogle Scholar
  41. (41).
    H. Jeon, J. Lee, M. H. Kim, and J. Yoon, Macromol. Rapid Commun., 33, 972 (2012).CrossRefGoogle Scholar
  42. (42).
    D. Sun, C. Chang, S. Li, and L. Lin, Nano Lett., 6, 839 (2006).CrossRefGoogle Scholar
  43. (43).
    C. Chang, K. Limkrailassiri, and L. Lin, Appl. Phys. Lett., 93, 123111 (2008).CrossRefGoogle Scholar
  44. (44).
    G. S. Bisht, G. Canton, A. Mirsepassi, L. Kulinsky, S. Oh, D. Dunn-Rankin, and M. J. Madou, Nano Lett., 11, 1831 (2011).CrossRefGoogle Scholar
  45. (45).
    F.-L. Zhou, P. L. Hubbard, S. J. Eichhorn, and G. J. M. Parker, Polymer, 52, 3603 (2011).CrossRefGoogle Scholar
  46. (46).
    Y.-K. Fuh, S. Chen, and J. S. C. Jang, J. Macromol. Sci. Part A: Pure Appl. Chem., 49, 845 (2012).CrossRefGoogle Scholar

Copyright information

© The Polymer Society of Korea and Springer Sciene+Business Media Dordrecht 2015

Authors and Affiliations

  1. 1.Department of Organic and Nano EngineeringHanyang UniversitySeoulKorea
  2. 2.Departments of Materials Science and Engineering, Beckman Institute, and Frederick Seitz Materials Research LaboratoryUniversity of Illinois at Urbana-ChampaignUrbanaUSA
  3. 3.Department of Chemical EngineeringHanyang UniversitySeoulKorea
  4. 4.Institute of Nano Science and TechnologyHanyang UniversitySeoulKorea

Personalised recommendations