Macromolecular Research

, Volume 23, Issue 2, pp 183–188 | Cite as

Preparation of a new charged nanofiltration membrane based on polyelectrolyte complex by forced fouling induction for a household water purifier

  • Eun Hye Cho
  • Ji Won RhimEmail author


A new technique is introduced for the preparation of composite membranes based on the salting-out effect. The concept of this new technique consists of three parts: (i) polymer precipitation by the salting-out effect, (ii) blocking the pore structure by pressurizing the precipitated polymer particles (polyelectrolyte), and (iii) deposition of opposite charged polyelectrolyte through ionic cross-linking (polyelectrolyte complex). The pore blocked polyelectrolyte has the role of a membrane, and we called this membrane preparation technique by forced fouling induction “precipitated solute pressurization” (PSP). In this study, water-soluble polymers that are all polyelectrolytes were used as coating materials, namely polyethylenimine (PEI), poly(styrene sulfonic acid-co-maleic acid) (PSSA_MA), and poly(vinyl sulfonic acid) (PVSA). The polymer particles formed by the addition of Mg(NO3)2·6H2O were pressurized and flown to the surface of microporous polyvinyledene fluoride (PVDF) to prepare composite membranes under varying conditions of polyelectrolyte concentration, ionic strength of salt, pressure, annealing temperature, etc. The resulting membranes were characterized in terms of the flux and rejection for 100 ppm NaCl at 4 atm to determine their suitability for application in a household water purifier. A combination of PVSA and PEI polyelectrolyte complex produced by the PSP method showed the best performance of flux of 43 LMH and salt rejection rate of 83%, and this performance was maintained without loss of flux or rejection rate in a durability test carried out for 10 days.


charged nanofiltration membrane salting-out polyelectrolyte complex forced fouling induction hollow fiber composite membrane 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. (1).
    X. Lu, X. Bian, and L. Shi, J. Membr. Sci., 210, 3 (2002).CrossRefGoogle Scholar
  2. (2).
    A. I. Schäfer, A. G. Fane, and T. D. Waite, Water Res., 36, 1509 (2001).CrossRefGoogle Scholar
  3. (3).
    A. Gorenflo, D. Velazquez-Padron, and F. H. Frimmel, Desalination 151, 253 (2002).CrossRefGoogle Scholar
  4. (4).
    R. J. Petersen, J. Membr. Sci., 83, 81 (1993).Google Scholar
  5. (5).
    R. J. Petersen and J. E. Cadotte, Thin Film Composite Reverse Osmosis Membranes, in Handbook of Industrial Membrane Technology, M. C. Porter, Ed., Noyes Publications, Park Ridge, 1990.Google Scholar
  6. (6).
    C. Y. Tang, Q. S. Fu, A. P. Robertson, C. S. Criddle, and J. O. Leckie, Environ. Sci. Technol., 40, 7343 (2006).CrossRefGoogle Scholar
  7. (7).
    C. Y. Tang, Y.-N. Kwon, and J. O. Leckie, J. Membr. Sci., 287, 146 (2007).CrossRefGoogle Scholar
  8. (8).
    C. Y. Tang, Y.-N. Kwon, and J. O. Leckie, Desalination, 242, 149 (2009).CrossRefGoogle Scholar
  9. (9).
    I.-C. Kim, H.-G. Yoon, and K.-H. Lee, J. Appl. Polym. Sci., 84, 1300 (2002).CrossRefGoogle Scholar
  10. (10).
    D. A. Musale and A. Kumar, Sep. Purif. Technol. 21, 27 (2000).CrossRefGoogle Scholar
  11. (11).
    G. Decher, Science, 277, 1232 (1997).CrossRefGoogle Scholar
  12. (12).
    B. W. Stanton, J. J. Harris, M. D. Miller, and M. L. Bruening, Langmuir, 19, 7038 (2003).CrossRefGoogle Scholar
  13. (13).
    S. U. Hong and M. L. Bruening, J. Membr. Sci., 280, 1 (2006).CrossRefGoogle Scholar
  14. (14).
    X. F. Li, S. D. Feyter, D. J. Chen, S. Aldea, P. Vandezande, F. D. Prez, and I. F. J. Vankelecom, Chem. Mater., 20, 3876 (2008).CrossRefGoogle Scholar
  15. (15).
    J. Miao, G. H. Chen, and C. J. Gao, Desalination, 181, 173 (2005).CrossRefGoogle Scholar
  16. (16).
    R. H. Huang, G. H. Chen, M. K. Sun, Y. M. Hu, C. J. Gao, J. Membr. Sci., 286, 237 (2006).CrossRefGoogle Scholar
  17. (17).
    T. T. Dong, G. H. Chen, C. J. Gao, J. Membr. Sci., 304, 33 (2007).CrossRefGoogle Scholar
  18. (18).
    R. H. Huang, G. H. Chen, M. K. Sun, and C. J. Gao, Desalination, 239, 38 (2009).CrossRefGoogle Scholar
  19. (19).
    T. W. Xu and W. H. Yang, J. Membr. Sci., 215, 25 (2003).CrossRefGoogle Scholar
  20. (20).
    H. T. Jin, Q. F. An, Q. Zhao, J. W. Qian, and M. H. Zhu, J. Membr. Sci., 347, 183 (2010).CrossRefGoogle Scholar
  21. (21).
    Y. M. Guo, W. Geng, and J. Q. Sun, Langmuir, 25, 1004 (2009).CrossRefGoogle Scholar
  22. (22).
    Y. Ji, Q. Ana, Q. Zhao, H. Chen, J. Qian, and C. Gao, J. Membr. Sci., 357, 80 (2010).CrossRefGoogle Scholar
  23. (23).
    J. W. Rhim, B. Lee, H. H. Park, and C. H. Seo, Macromol. Res., 22, 361 (2014).CrossRefGoogle Scholar
  24. (24).
    S. I. Cheong, B. Kim, H. Lee, and J. W. Rhim, Macromol. Res., 20, 629 (2013).CrossRefGoogle Scholar
  25. (25).
    C. J. Park, S. P. Kim, S. I. Cheong, and J. W. Rhim, Polym. Korea, 36, 810 (2012).CrossRefGoogle Scholar
  26. (26).
    B. Kim, H. Lee, B. Lee, S. Kim, S. I. Cheong, and J. W. Rhim, Polym. Korea, 35, 438 (2011).Google Scholar
  27. (27).
    P. D. Ries and C. J. McDonald, WO 95/03878 (1997).Google Scholar

Copyright information

© The Polymer Society of Korea and Springer Sciene+Business Media Dordrecht 2015

Authors and Affiliations

  1. 1.Department of Chemical EngineeringHannam UniversityDaejeonKorea

Personalised recommendations