Macromolecular Research

, Volume 23, Issue 1, pp 13–20 | Cite as

Micellar packing of pluronic block copolymer solutions: Polymeric impurity effects

  • Han Jin Park
  • Gregory M. Treich
  • Zachary D. Helming
  • Joel E. Morgan
  • Chang Y. Ryu
  • Hee Sung Hwang
  • Gyoo Yeol Jung


Small angle X-ray scattering (SAXS), dynamic light scattering (DLS), and high performance liquid chromatography (HPLC) experiments are performed to support that the inter-micellar distance of Pluronic cubic structures in aqueous solutions is governed by the poly(ethylene oxide) (PEO)-poly(propylene oxide) (PPO)-PEO triblock copolymer concentration (not the overall polymer concentration) in the solutions. The “as-received (AR)” and “purified (Pure)” F108 solutions show a separate concentration dependence of body-centered cubic (BCC) lattice spacing, when the overall polymer concentration is used as a micellar packing parameter in aqueous solution. When the 22 wt% of non-micellizable polymeric impurities in the AR Pluronic F108 is taken into account, however, a universal concentration dependence of the BCC lattice spacing is observed, unifying results from both AR and Pure F108 solutions. When the PEO-PPO-PEO triblock copolymer concentration from the HPLC analysis is employed as an effective polymer concentration parameter, the universal relationship is observed to provide strong evidence that the polymeric impurities in AR F108 locate themselves in the less dense parts of the interstitial regions on the BCC lattice points, where were occupied by the triblock copolymer micelles. Although the polymeric impurities in AR F108 do not affect the actual triblock concentration dependence of the lattice spacing, they do shift the onset concentration of BCC micellar ordering. In the Pure F108, the onset of BCC packing occurs at the point where the nearest-neighbor radius (R nn) in the BCC lattice is approximately equal to the hydrodynamic radius (R h), indicating that lattice formation begins upon “hydrodynamic contact” between micelles. In the AR F108, the onset of packing occurs when R nn/R h is approximately 0.9, indicating that, in the presence of the polymeric impurities, micelles must be forced together beyond the point of hydrodynamic contact for the BCC packing.


block copolymers micelles pluronics small angle X-ray scattering 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. (1).
    P. Alexandridis, J. F. Holzwarth, and T. A. Hatton, Macromolecules, 27, 2414 (1994).CrossRefGoogle Scholar
  2. (2).
    P. Alexandridis and T. A. Hatton, Colloids Surf. A, 96, 1 (1995).CrossRefGoogle Scholar
  3. (3).
    M. L. Adams, A. Lavasanifar, and G. S. Kwon, J. Pharm. Sci., 92, 1343 (2003).CrossRefGoogle Scholar
  4. (4).
    E. V. Batrakova and A. V. Kabanov, J. Control. Release, 130, 98 (2008).CrossRefGoogle Scholar
  5. (5).
    S. D. Singh-Joy and V. C. McLain, Int. J. Toxicol., 27, 93 (2008).CrossRefGoogle Scholar
  6. (6).
    I. R. Schmolka, Nononic Surfactants, M. J. Schick, Ed., Marcel Dekker, New York, 1967.Google Scholar
  7. (7).
    A. Noshay and J. E. Mcgrath, Block Copolymers: Overview and Critical Survey, Academic Press, New York, 1977.Google Scholar
  8. (8).
    W. Batsberg, S. Ndoni, C. Trandum, and S. Hvidt, Macromolecules, 37, 2965 (2004).CrossRefGoogle Scholar
  9. (9).
    S. Hvidt and W. Batsberg, Int. J. Polym. Anal. Charact., 12, 13 (2007).CrossRefGoogle Scholar
  10. (10).
    Q. G. Wang, C. Price, and C. Booth, J. Chem. Soc. Faraday Trans., 88, 1437 (1992).CrossRefGoogle Scholar
  11. (11).
    Q. G. Wang, G. E. Yu, Y. L. Deng, C. Price, and C. Booth, Eur. Polym. J., 29, 665 (1993).CrossRefGoogle Scholar
  12. (12).
    K. Mortensen, W. Batsberg, and S. Hvidt, Macromolecules, 41, 1720 (2008).CrossRefGoogle Scholar
  13. (13).
    D. Y. Zhao, J. L. Feng, Q. S. Huo, N. Melosh, G. H. Fredrickson, B. F. Chmelka, and G. D. Stucky, Science, 279, 548 (1998).CrossRefGoogle Scholar
  14. (14).
    D. Y. Zhao, Q. S. Huo, J. L. Feng, B. F. Chmelka, and G. D. Stucky, J. Am. Chem. Soc., 120, 6024 (1998).CrossRefGoogle Scholar
  15. (15).
    D. Y. Zhao, J. Y. Sun, Q. Z. Li, and G. D. Stucky, Chem. Mater., 12, 275 (2000).CrossRefGoogle Scholar
  16. (16).
    M. Malmsten and B. Lindman, Macromolecules, 25, 5440 (1992).CrossRefGoogle Scholar
  17. (17).
    G. Wanka, H. Hoffmann, and W. Ulbricht, Macromolecules, 27, 4145 (1994).CrossRefGoogle Scholar
  18. (18).
    K. Mortensen and Y. Talmon, Macromolecules, 28, 8829 (1995).CrossRefGoogle Scholar
  19. (19).
    R. K. Prudhomme, G. W. Wu, and D. K. Schneider, Langmuir, 12, 4651 (1996).CrossRefGoogle Scholar
  20. (20).
    C. H. Wu, T. B. Liu, B. J. Chu, D. K. Schneider, and V. Graziano, Macromolecules, 30, 4574 (1997).CrossRefGoogle Scholar
  21. (21).
    F. R. Molino, J. F. Berret, G. Porte, O. Diat, and P. Lindner, Eur. Phys. J. B, 3, 59 (1998).CrossRefGoogle Scholar
  22. (22).
    E. Eiser, F. Molino, G. Forte, and X. Pithon, Rheol. Acta, 39, 201 (2000).CrossRefGoogle Scholar
  23. (23).
    E. Eiser, F. Molino, G. Porte, and O. Diat, Phys. Rev. E, 61, 6759 (2000).CrossRefGoogle Scholar
  24. (24).
    B. K. Lau, Q. Q. Wang, W. Sun, and L. Li, J. Polym. Sci. Part B: Polym. Phys., 42, 2014 (2004).CrossRefGoogle Scholar
  25. (25).
    Q. Q. Wang, L. Li, and S. P. Jiang, Langmuir, 21, 9068 (2005).CrossRefGoogle Scholar
  26. (26).
    H. Yardimci, B. Chung, J. L. Harden, and R. L. Leheny, J. Chem. Phys., 123, 244908 (2005).CrossRefGoogle Scholar
  27. (27).
    P. H. Mohan and R. Bandyopadhyay, Phys. Rev. E, 77, 041803 (2008).Google Scholar
  28. (28).
    H. J. Park and C. Y. Ryu, Polymer, 53, 5052 (2012).CrossRefGoogle Scholar
  29. (29).
    R. F. T. Stepto, Pure Appl. Chem., 81, 351 (2009).Google Scholar
  30. (30).
    S. W. Provencher, Comput. Phys. Commun., 27, 213 (1982).CrossRefGoogle Scholar
  31. (31).
    S. W. Provencher, Comput. Phys. Commun., 27, 229 (1982).CrossRefGoogle Scholar
  32. (32).
    D. C. Pozzo and L. M. Walker, Macromolecules, 40, 5801 (2007).CrossRefGoogle Scholar
  33. (33).
    D. C. Pozzo and L. M. Walker, Eur. Phys. J. E, 26, 183 (2008).CrossRefGoogle Scholar
  34. (34).
    J. Bang and T. P. Lodge, Macromol. Res., 16, 51 (2008).CrossRefGoogle Scholar
  35. (35).
    T. P. Lodge, J. Bang, M. J. Park, and K. Char, Phys. Rev. Lett., 92, 145501 (2004).CrossRefGoogle Scholar

Copyright information

© The Polymer Society of Korea and Springer Sciene+Business Media Dordrecht 2015

Authors and Affiliations

  • Han Jin Park
    • 1
  • Gregory M. Treich
    • 1
  • Zachary D. Helming
    • 1
  • Joel E. Morgan
    • 2
  • Chang Y. Ryu
    • 1
  • Hee Sung Hwang
    • 4
  • Gyoo Yeol Jung
    • 3
    • 5
  1. 1.Department of Chemistry and Chemical BiologyRensselaer Polytechnic Institute, TroyNew YorkUSA
  2. 2.Center for Biotechnology and Interdisciplinary StudiesRensselaer Polytechnic Institute, TroyNew YorkUSA
  3. 3.Department of Chemical EngineeringPohang University of Science and Technology, PohangGyeongbukKorea
  4. 4.Institute of Environmental and Energy TechnologyPohang University of Science and Technology, PohangGyeongbukKorea
  5. 5.School of Interdisciplinary Bioscience and BioengineeringPohang University of Science and Technology, PohangGyeongbukKorea

Personalised recommendations