Advertisement

Macromolecular Research

, Volume 23, Issue 1, pp 53–59 | Cite as

Injectable in situ forming chitosan-based hydrogels for curcumin delivery

  • Titima Songkroh
  • Hongguo Xie
  • Weiting Yu
  • Xiudong Liu
  • Guangwei Sun
  • Xiaoxi Xu
  • Xiaojun MaEmail author
Article

Abstract

In this paper, a series of injectable in situ forming chitosan-based hydrogels were prepared by chemical crosslinking of chitosan and genipin with the cooperation of ionic bonds between chitosan and sodium salts at room temperature. Four hydrogels (A, B, C, and D) were obtained by mixing chitosan, genipin and a sodium salt of trisodium phosphate (Na3PO4·12H2O), sodium sulfate (Na2SO4), sodium sulfite (Na2SO3), or sodium bicarbonate (NaHCO3) and examined for their characteristics, morphology, and rheological properties. Their cell viability assays exhibited low toxicity and the localized in situ gel formation was detected after subcutaneous injections in rat. Curcumin which possesses many pharmaceutical potentials but has low bioavailability, was chosen as a drug model. In vitro curcumin release profiles exhibit sustained release properties with initial burst release for all hydrogels with about 3 to 6 times higher cumulative release than other gel controls. The results of this study demonstrate that our hydrogels have a potential as local curcumin carriers.

Keywords

chitosan hydrogel curcumin drug delivery 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. (1).
    N. Annabi, A. Tamayol, J. A. Uquillas, M. Akbar, L. E. Bertassoni, C. Cha, G. Camci-Unal, M. R. Dokmeci, N. A. Peppas, and A. Khademhosseini, Adv. Mater., 26, 85 (2014).CrossRefGoogle Scholar
  2. (2).
    F. Croisier and C. Jérôme, Eur. Polym. J., 49, 780 (2013).CrossRefGoogle Scholar
  3. (3).
    A. S. Hoffman, Adv. Drug Deliv. Rev., 64, 18 (2012).CrossRefGoogle Scholar
  4. (4).
    J. B. Wolinsky, Y. L. Colson, and M. W. Grinstaff, J. Control. Release, 159, 14 (2012).CrossRefGoogle Scholar
  5. (5).
    N. Bhattarai, J. Gunn, and M. Zhang, Adv. Drug Deliv. Rev., 62, 83 (2010).CrossRefGoogle Scholar
  6. (6).
    J. L. Drury and D. J. Mooney, Biomaterials, 24, 4337 (2003).CrossRefGoogle Scholar
  7. (7).
    N. A. Peppas, P. Bures, W. Leobandung, and H. Ichikawa, Eur. J. Pharm. Biopharm., 50, 27 (2000).CrossRefGoogle Scholar
  8. (8).
    W. E. Hennink and C. F. van Nostrum, Adv. Drug Deliv. Rev., 54, 13 (2002).CrossRefGoogle Scholar
  9. (9).
    D. P. Speer, M. Chvapil, C. D. Eskelson, and J. Ulreich, J. Biomed. Mater. Res. A, 14, 753 (1980).CrossRefGoogle Scholar
  10. (10).
    A. Chenite, C. Chaput, D. Wang, C. Combes, M. D. Buschmann, C. D. Hoemann, J. C. Leroux, B. L. Atkinson, F. Binette, and A. Selmani, Biomaterials, 21, 2155 (2000).CrossRefGoogle Scholar
  11. (11).
    E. Ruel-Gariépy, A. Chenite, C. Chaput, S. Guirguis, and J.-C. Leroux, Int. J. Pharm., 203, 89 (2000).CrossRefGoogle Scholar
  12. (12).
    M. J. Moura, H. Faneca, M. P. Lima, M. H. Gil, and M. M. Figueiredo, Biomacromolecules, 12, 3275 (2011).CrossRefGoogle Scholar
  13. (13).
    R. A. A. Muzzarelli, Carbohydr. Polym., 77, 1 (2009).CrossRefGoogle Scholar
  14. (14).
    A. Z. Wilczewska, K. Niemirowicz, K. H. Markiewicz, and H. Car, Pharmacol. Rep., 64, 1020 1(2012).CrossRefGoogle Scholar
  15. (15).
    G. Tiwari, R. Tiwari, B. Sriwastawa, L. Bhati, S. Pandey, P. Pandey, and S. K. Bannerjee, Int. J. Pharm. Investig., 2, 2 (2012).CrossRefGoogle Scholar
  16. (16).
    B. B. Aggarwal and K. B. Harikumar, Int. J. Biochem. Cell Biol., 41, 40 (2009).CrossRefGoogle Scholar
  17. (17).
    P. Anand, S. G. Thomas, A. B. Kunnumakkara, C. Sundaram, K. B. Harikumar, B. Sung, S. T. Tharakan, K. Misra, I. K. Priyadarsini, K. N. Rajasekharan, and B. B. Aggarwal, Biochem. Pharmacol., 76, 1590 (2008).CrossRefGoogle Scholar
  18. (18).
    J. J. Johnson and H. Mukhtar, Cancer Lett., 255, 170 (2007).CrossRefGoogle Scholar
  19. (19).
    R. K. Maheshwari, A. K. Singh, J. Gaddipati, and R. C. Srimal, Life Sci., 78, 2081 (2006).CrossRefGoogle Scholar
  20. (20).
    P. Anand, A. B. Kunnumakkara, R. A. Newman, and B. B. Aggarwal, Mol. Pharm., 4, 807 (2007).CrossRefGoogle Scholar
  21. (21).
    N. Sowasod, K. Nakagawa, W. Tanthapanichakoon, and T. Charinpanitkul, Mater. Sci. Eng. C, 32, 790 (2012).CrossRefGoogle Scholar
  22. (22).
    X. Li, S. Chen, B. Zhang, M. Li, K. Diao, Z. Zhang, J. Li, Y. Xu, X. Wang, and H. Chen, Int. J. Pharm., 437, 110 (2012).CrossRefGoogle Scholar
  23. (23).
    M. Sun, X. Su, B. Ding, X. He, X. Liu, A. Yu, H. Lou, and G. Zhai, Nanomedicine-UK, 7, 1085 (2012).CrossRefGoogle Scholar
  24. (24).
    A. Anitha, S. Maya, N. Deepa, K. P. Chennazhi, S. V. Nair, H. Tamura, and R. Jayakumar, Carbohydr. Polym., 83, 452 (2011).CrossRefGoogle Scholar
  25. (25).
    X. Ma, T. Songkroh, W. Yu, H. Xie, X. Liu, and W. Xie, PCT Patent WO2014005471A1 (2014).Google Scholar
  26. (26).
    X. Ma, H. Xie, W. Yu, and T. Songkroh, Chinese Patent CN103524795A (2014).Google Scholar
  27. (27).
    M. O. Wang, J. M. Etheridge, J. A. Thompson, C. E. Vorwald, D. Dean, and J. P. Fisher, Biomacromolecules, 14, 1321 (2013).CrossRefGoogle Scholar
  28. (28).
    M. Lavertu, D. Filion, and M. D. Buschmann, Biomacromolecules, 9, 640 (2008).CrossRefGoogle Scholar
  29. (29).
    F.-L. Mi, S.-S. Shyu, and C.-K. Pen, J. Polym. Sci. Part A: Polym. Chem., 43, 1985 (2005).CrossRefGoogle Scholar
  30. (30).
    F.-L. Mi, H.-W. Sung, and S.-S. Shyu, J. Polym. Sci. Part A: Polym. Chem., 38, 2804 (2000).CrossRefGoogle Scholar
  31. (31).
    G. Woodard, in Methods of Animal Experimentation, W. J. Gay, Ed., Academic Press, New York, 1965, Vol. 1, p 343.CrossRefGoogle Scholar
  32. (32).
    S. Shimizu, in Chapter 32 — Routes of Administration, H. J. Hedrich and G. Bullock, Eds., Academic Press, New York, 2004, p 527.Google Scholar
  33. (33).
    M. Ishiyama, Y. Miyazono, M. Shiga, and K. Sasamoto, US Patent US6063587A (2000).Google Scholar
  34. (34).
    R. Riva, H. Ragelle, A. des Rieux, N. Duhem, C. Jérôme, and V. Préat, Adv. Polym. Sci., 244, 19 (2011).CrossRefGoogle Scholar
  35. (35).
    M. N. V. R. Kumar, R. A. A. Muzzarelli, C. Muzzarelli, H. Sashiwa, and A. J. Domb, Chem. Rev., 104, 6017 (2004).CrossRefGoogle Scholar
  36. (36).
    Y.-S. Paik, C.-M. Lee, M.-H. Cho, and T.-R. Hahn, J. Agric. Food Chem., 49, 430 (2001).CrossRefGoogle Scholar
  37. (37).
    C. P. Brewer, B. Dawson, K. E. Wallman, and K. J. Guelfi, Int. J. Sport Nutr. Exerc. Metab., 23, 187 (2013).Google Scholar
  38. (38).
    H. C. Lukaski, in Chapter 10 — Magnesium, Phosphate, and Calcium Supplementation and Human Physical Performance, J. A. Driskell and I. Wolinsky, Eds., CRC Press, Florida, 2004, p 197.Google Scholar
  39. (39).
    Regulation (EC) No 1333/2008 (OJ L354, p16, 31/12/2008) of the European Parliament and of the Council of 16 December 2008 on Food Additives (2013).Google Scholar

Copyright information

© The Polymer Society of Korea and Springer Sciene+Business Media Dordrecht 2015

Authors and Affiliations

  • Titima Songkroh
    • 1
    • 2
  • Hongguo Xie
    • 1
  • Weiting Yu
    • 1
  • Xiudong Liu
    • 3
  • Guangwei Sun
    • 1
  • Xiaoxi Xu
    • 1
  • Xiaojun Ma
    • 1
    Email author
  1. 1.Dalian Institute of Chemical Physics (DICP)Chinese Academy of Sciences (CAS)Dalian, LiaoningP. R. China
  2. 2.University of Chinese Academy of Sciences (UCAS)BeijingP. R. China
  3. 3.College of Environment and Chemical EngineeringDalian UniversityDalian, LiaoningP. R. China

Personalised recommendations