Skip to main content
Log in

Biodegradation of polylactic acid (PLA) fibers using different enzymes

  • Articles
  • Published:
Macromolecular Research Aims and scope Submit manuscript

Abstract

The biodegradability of polylactic acid (PLA) nonwovens was evaluated using enzymatic degradation. To evaluate enzyme biodegradation, three enzymes, lipase, esterase, and alcalase, which are known to hydrolyze PLA effectively, were selected. Degradation time was determined under optimal enzyme treatment conditions. Enzymatic degradation affected the width and thickness of PLA nonwovens. In addition, the degree of crystallinity of the PLA nonwovens increased with time for the first 21 days of enzyme biodegradation and then decreased. Alcalase was more efficient than lipase and esterase in degrading the PLA nonwovens. Degradation was found to create cracks on the fiber surface, making the fibers rough. Weight loss and change in tensile strength were not significant, and the observed changes could be due to the cracks on the surface. Our findings propose the mechanism of enzymatic degradation of PLA nonwovens, which might be useful for waste management in the textile industry.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. V. T. Santana, S. P. C. Conalves, J. A. M. Agnelli, and S. M. Martins-Franchetti, J. Appl. Polym. Sci., 125, 536 (2012).

    Article  CAS  Google Scholar 

  2. R. E. Drumright, P. R. Gruber, and D. E. Henton, Adv. Mater., 23, 1841 (2000).

    Article  Google Scholar 

  3. D. W. Farrington, J. Lunt, S. Davies, and R. S. Blackburn, in Biodegradable and Sustainable Fibres, R. S. Blackburn, Ed., Woodhead Publishing Limited, Cambridge, 2005, Vol. 6, pp 191–218.

  4. S. H. Lee and W. S. Song, J. Korean Soc. Cloth. Text., 35, 670 (2011).

    Article  Google Scholar 

  5. G. Li, P. Sarazin, W. J. Orts, S. H. Imam, and B. D. Favis, Macromol. Chem. Phys., 212, 1147 (2011).

    Article  CAS  Google Scholar 

  6. J. Lunt, Polym. Degrad. Stab., 59, 145 (1998).

    Article  CAS  Google Scholar 

  7. A. Steinbüchel, in Biopolymers: Biology, Chemistry, Biotechnology, Applications, Y. Doi and A. Steinbüchel, Eds., Wiley-VCH, Weinheim, 2002.

  8. K. Sawada, H. Urakawa, and M. Ueda, Text. Res. J., 77, 901 (2007).

    Article  CAS  Google Scholar 

  9. K. Oksman, M. Skrifvars, and J. F. Selin, Compos. Sci. Technol., 63, 1317 (2003).

    Article  CAS  Google Scholar 

  10. S. H. Lee and W. S. Song, Text. Res. J., 83, 229 (2013).

    Article  Google Scholar 

  11. S. H. Lee and W. S. Song, J. Korean Soc. Cloth. Text., 36, 653 (2012).

    Article  Google Scholar 

  12. S. H. Lee and W. S. Song, Appl. Biochem. Biotechnol., 164, 89 (2011).

    Article  CAS  Google Scholar 

  13. K. I. Park and M. Xanthos, Polym. Degrad. Stab., 94, 834 (2009).

    Article  CAS  Google Scholar 

  14. A. Zhang, X. Wang, J. Gong, and Z. Gu, J. Appl. Polym. Sci., 93, 1089 (2004).

    Article  CAS  Google Scholar 

  15. I. B. Kim, M. C. Lee, I. S. Seo, and P. K. Shin, Polymer, 19, 727 (1995).

    CAS  Google Scholar 

  16. J. Chen, J. Z. Chen, M. Z. Tan, and G. Z. Gong, J. Geogr. Sci., 12, 243 (2002).

    Article  CAS  Google Scholar 

  17. N. Lucas, C. Belloy, M. Queneudec, F. Silvestre, and J. Nava-Saucedo, Chemosphere, 73, 429 (2008).

    Article  CAS  Google Scholar 

  18. E. Namkung, C. J. Tak, and J. C. Chung, J. KOWREC, 2, 185 (1994).

    Google Scholar 

  19. U. Klun, J. Friedrich, and A. Krzan, Polym. Degrad. Stab., 79, 99 (2003).

    Article  CAS  Google Scholar 

  20. K. E. Ryue and Y. B. Kim, Polym. Sci. Technol., 9, 464 (1998).

    Google Scholar 

  21. A. A. Shah, F. Hasan, A. Hameed, and S. Ahmed, Biotechnol. Adv., 26, 246 (2008).

    Article  CAS  Google Scholar 

  22. Q. Cai, G. Shi, J. Bei, and S. Wang, Biomaterials, 24, 629 (2003).

    Article  Google Scholar 

  23. A. M. Gajria, V. Dave, R. A. Gross, and S. P. McCarthy, Polymer, 37, 437 (1996).

    Article  CAS  Google Scholar 

  24. R. T. MacDonald, S. P. McCarthy, and R. A. Gross, Macromolecules, 29, 7356 (1996).

    Article  CAS  Google Scholar 

  25. M. S. Reeve, S. P. McCarthy, M. J. Downey, and R. A. Gross, Macromolecules, 27, 825 (1994).

    Article  CAS  Google Scholar 

  26. M. Vert, in Degradation of Polymeric Biomaterials with Respect to Temporary Applications: Tricks and Treats, S. A. Barenberg, J. L. Brash, R. Narayan, and A. E. Redpath, Eds., CRC Press, Boca Raton, 1990, pp11–37.

  27. H. Tsuji and Y. Ikada, J. Appl. Polym. Sci., 63, 855 (1997).

    Article  CAS  Google Scholar 

  28. S. Li and S. McCarthy, Biomaterials, 20, 35 (1999).

    Article  CAS  Google Scholar 

  29. M. Watanabe, F. Kawai, S. Tsuboi, S. Nakatsu, and H. Ohara, Macromol. Theory Simul., 16, 619 (2007).

    Article  CAS  Google Scholar 

  30. S. J. Kandolph, inTextiles, V. Anthony, Ed., Pearson Education, Inc., New Jersey, 2010.

  31. M. F. Gonzalez, R. A. Ruseckaite, and T. R. Cuadrado, J. Appl. Polym. Sci., 71, 1223 (1999).

    Article  CAS  Google Scholar 

  32. Y. Tokiwa and A. Jarerat, Biotechnol. Lett., 26, 771 (2004).

    Article  CAS  Google Scholar 

  33. S. Li, J. Biomed. Mater. Res., 48, 342 (1999).

    Article  CAS  Google Scholar 

  34. D. H. Jung, Enzymology, Daegwangseolim, Seoul, 2003.

    Google Scholar 

  35. J. H. Walsh, Int. Biodeterior. Biodegradation, 48, 16 (2001).

    Article  CAS  Google Scholar 

  36. Y. Tokiwa and B. P. Calabia, Appl. Microbiol. Biotechnol., 72, 244 (2006).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to In Young Kim or Wha Soon Song.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lee, S.H., Kim, I.Y. & Song, W.S. Biodegradation of polylactic acid (PLA) fibers using different enzymes. Macromol. Res. 22, 657–663 (2014). https://doi.org/10.1007/s13233-014-2107-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13233-014-2107-9

Keywords

Navigation