Macromolecular Research

, Volume 21, Issue 5, pp 556–564 | Cite as

Lanthanide(III) dendrimer complexes based on diphenylquinoxaline derivatives for photonic amplification

  • Yu Kyung Eom
  • Jung Ho Ryu
  • Jean-Claude G. Bünzli
  • Jong-Beom Baek
  • Hwan Kyu Kim
Article

Abstract

A series of novel lanthanide(III) complexes (Ln=Gd, Er, Yb) based on dendritic diphenylquinoxaline (DPQ) ligands was designed and synthesized with the aim of enhancing the luminescence intensity of Er3+ and Yb3+ ions for photonic applications. The diphenyl-quinoxaline ligand was introduced as a photon antenna for efficient light harvesting and subsequent energy transfer onto the Ln3+ ions. The dendritic complexes showed strong near-IR emission at 981 (Yb3+) and 1,530 (Er3+) nm, which was sensitized through energy transfer from the excited states of the diphenyl-quinoxaline ligands. The near-IR emission intensity of the lanthanide ions in second-generation [Ln(G2-DPQ-COO)3(terpy)] complexes was significantly enhanced, due to the light-harvesting effect, with respect to [Ln(G1-DPQ-COO)3(terpy)]. However, increasing the size of the dendron in [Ln(G3-DPQ-COO)3(terpy)] was found to be detrimental to the emission efficiency. This may be attributed to the twisted structure of the dendritic ligand and suggests that conformational effects should be taken into consideration when designing ligands for photonic amplification.

Keywords

dendrimer lanthanide complex near-IR luminescence energy transfer photonic amplification 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Supplementary material

13233_2013_1100_MOESM1_ESM.pdf (1.2 mb)
Supplementary material, approximately 1.21 MB.

References

  1. (1).
    T. S. Kang, B. S. Harrison, M. Bouguettaya, T. J. Foley, J. M. Boncella, K. S. Schanze, and J. R. Reynolds, Adv. Funct. Mater., 13, 205 (2003).CrossRefGoogle Scholar
  2. (2).
    T. Oyamada, Y. Kawamura, T. Koyama, H. Sasabe, and C. Adachi, Adv. Mater., 16, 1082 (2004).CrossRefGoogle Scholar
  3. (3).
    H. K. Kim, J. B. Oh, N. S. Baek, S. G. Roh, M. K. Nah, and Y. H. Kim, Bull. Korea Chem. Soc., 26, 201 (2005).CrossRefGoogle Scholar
  4. (4).
    Y. H. Kim, N. S. Baek, J. B. Oh, M. K. Nah, S. G. Roh, B. J. Song, and H. K. Kim, Macromol. Res., 15, 272 (2007).CrossRefGoogle Scholar
  5. (5).
    C. Chen, D. Zhang, T. Li, D. M. Zhang, L. M. Song, and Z. Zhen, J. Nanosci. Technol., 10, 1947 (2010).CrossRefGoogle Scholar
  6. (6).
    K. L. Lei, C. F. Chow, K. C. Tsang, E. N. Y. Lei, V. A. L. Roy, M. H. W. Lam, C. S. Lee, E. Y. B. Pun, and J. Li, J. Mater. Chem., 20, 7526 (2010).CrossRefGoogle Scholar
  7. (7).
    S. V. Eliseeva and J.-C. G. Bünzli, Chem. Soc. Rev., 39, 189 (2010).CrossRefGoogle Scholar
  8. (8).
    J.-C. G. Bünzli and S. V. Eliseeva, J. Rare Earths., 28, 824 (2010).CrossRefGoogle Scholar
  9. (9).
    S. V. Eliseeva and J.-C. G. Bünzli, New J. Chem., 35, 1165 (2011).CrossRefGoogle Scholar
  10. (10).
    J. Rocha, L. D. Carlos, F. A. A. Paz, and D. Ananias, Chem. Soc. Rev., 40, 926 (2011).CrossRefGoogle Scholar
  11. (11).
    S. I. Klink, L. Grave, D. N. Reinhoudt, F. C. J. M. Van Veggel, M. H. V. Werts, F. A. J. Geurts, and J. W. Hofstraat, J. Phys. Chem. A, 104, 5457 (2000).CrossRefGoogle Scholar
  12. (12).
    G. Mancino, A. J. Ferguson, A. Beeby, N. J. Long, and T. S. Jones, J. Am. Chem. Soc., 127, 524 (2005).CrossRefGoogle Scholar
  13. (13).
    D. B. Nie, Z. Q. Chen, Z. Q. Bian, J. Q. Zhou, Z. W. Liu, F. F. Chen, Y. L. Zhao, and C. H. Huang, New J. Chem., 31, 1639 (2007).CrossRefGoogle Scholar
  14. (14).
    I. Hernandez, N. Pathumakanthar, P. B. Wyatt, and W. P. Gillin, Adv. Mater., 22, 5356 (2010).CrossRefGoogle Scholar
  15. (15).
    I. Hernandez, R. H. C. Tan, J. M. Pearson, P. B. Wyatt, and W. P. Gillin, J. Phys. Chem. B, 113, 7474 (2009).CrossRefGoogle Scholar
  16. (16).
    A. Monguzzi, A. Milani, L. Lodi, M. I. Trioni, R. Tubino, and C. Castiglioni, New J. Chem., 33, 1542 (2009).CrossRefGoogle Scholar
  17. (17).
    C. Bischof, J. Wahsner, J. Scholten, S. Trosien, and M. Seitz, J. Am. Chem. Soc., 132, 14334 (2010).CrossRefGoogle Scholar
  18. (18).
    F. Quochi, M. Saba, H. Artizzu, M. L. Mercuri, P. Deplano, A. Mura, and G. Bongiovanni, J. Phys. Chem. Lett., 1, 2733 (2010).CrossRefGoogle Scholar
  19. (19).
    D. Astruc, E. Boisselier, and C. Ornelas, Chem. Rev., 110, 1857 (2010).CrossRefGoogle Scholar
  20. (20).
    M. Kawa and J. M. J. Frechet, Thin Sol. Films., 331, 259 (1998).CrossRefGoogle Scholar
  21. (21).
    M. A. Alcala, S. Y. Kwan, C. M. Shade, M. G. Lang, H. Uh, M. Y. Wang, S. G. Weber, D. L. Bartlett, S. Petoud, and Y. J. Lee, Nanomedicine, 7, 249 (2011).CrossRefGoogle Scholar
  22. (22).
    J. W. Ka and H. K. Kim, Tetrahedron Lett., 45, 4519 (2004).CrossRefGoogle Scholar
  23. (23).
    J. B. Oh, Y. H. Kim, M. K. Nah, and H. K. Kim, J. Lumin., 111, 255 (2005).CrossRefGoogle Scholar
  24. (24).
    J. B. Oh, M. K. Nah, Y. H. Kim, M. S. Kang, J. W. Ka, and H. K. Kim, Adv. Funct. Mater., 17, 413 (2007).CrossRefGoogle Scholar
  25. (25).
    N. S. Baek, Y. H. Kim, and H. K. Kim, Bull. Korea Chem. Soc., 27, 1729 (2006).CrossRefGoogle Scholar
  26. (26).
    N. S. Baek, Y. H. Kim, S. G. Roh, B. K. Kwak, and H. K. Kim, Adv. Funct. Mater., 16, 1873 (2006).CrossRefGoogle Scholar
  27. (27).
    M. Kawa and J. M. J. Frechet, Chem. Mater., 10, 286 (1998).CrossRefGoogle Scholar
  28. (28).
    A. Adronov and J. M. J. Frechet, Chem. Commun., 1701 (2000).Google Scholar
  29. (29).
    X. Cao, F. Jin, Y. F. Li, W. Q. Chen, X. M. Duan, and L. M. Yang, New J. Chem., 33, 1578 (2009).CrossRefGoogle Scholar
  30. (30).
    V. Vicinelli, P. Ceroni, M. Maestri, V. Balzani, M. Gorka, and F. Vögtle, J. Am. Chem. Soc., 124, 6461 (2002).CrossRefGoogle Scholar
  31. (31).
    S. I. Klink, G. A. Hebbink, L. Grave, F. G. A. Peters, F. C. J. M. Van Veggel, D. N. Reinhoudt, and J. W. Hofstraat, Eur. J. Org. Chem., 10, 1923 (2000).CrossRefGoogle Scholar
  32. (32).
    M. Latva, H. Takalo, V. M. Mukkala, C. Matachescu, J.-C. Rodriguez-Ubis, and J. Kankare, J. Lumin., 75, 149 (1997).CrossRefGoogle Scholar
  33. (33).
    A. Dadabhoy, S. Faulkner, and P. G. Sammes, J. Chem. Soc., Perkin Trans., 2, 348 (2002).Google Scholar
  34. (34).
    S. Comby and J.-C. G. Bünzli, in Handbook on the Physics and Chemistry of Rare Earths, K. A. Gschneidner Jr., J.-C. G. Bünzli, and V. K. Pecharsky, Eds., Elsevier Science B.V., Amsterdam, 2007, Vol. 37, p 235.Google Scholar
  35. (35).
    T. Lazarides, D. Sykes, S. Faulkner, A. Barbieri, and M. D. Ward, Chem. Eur. J., 14, 9389 (2008).CrossRefGoogle Scholar
  36. (36).
    S. R. Meech and D. C. Phillips, J. Photochem., 23, 193 (1983).CrossRefGoogle Scholar

Copyright information

© The Polymer Society of Korea and Springer Sciene+Business Media Dordrecht 2013

Authors and Affiliations

  • Yu Kyung Eom
    • 1
  • Jung Ho Ryu
    • 1
  • Jean-Claude G. Bünzli
    • 1
    • 2
  • Jong-Beom Baek
    • 3
  • Hwan Kyu Kim
    • 1
  1. 1.Department of Advanced Materials Chemistry, WCU Center for Photovoltaic MaterialsKorea UniversitySejongKorea
  2. 2.Institute of Chemical Sciences and EngineeringÉcole Polytechnique Fédérale de LausanneLausanneSwitzerland
  3. 3.Ulsan National Institute of Science & Technology (UNIST)UlsanKorea

Personalised recommendations