Advertisement

Macromolecular Research

, Volume 21, Issue 6, pp 629–635 | Cite as

Physical adsorption of water-soluble polymers on hydrophobic polymeric membrane surfaces via salting-out effect

  • Seong Ihl Cheong
  • Baekahm Kim
  • Hakmin Lee
  • Ji Won RhimEmail author
Article

Abstract

In this study, polyvinylamine (PVAm), poly(vinyl sulfonic acid) (PVSA), and poly(styrene sulfonic acid) (PSSA) were physically adsorbed, using the ‘salting-out’ effect, onto hydrophobic membrane surfaces such as polysulfone (PSf), polyvinylidene fluoride (PVDF), and polyethylene (PE), commonly used as ultrafiltration (UF) and microfiltration (MF) membranes. The physical adsorption of such hydrophilic polymers were monitored as a function of concentration, time, type of salt, and ionic strength, and the resulting adsorbed membranes were characterized using a contact angle measurement, a gravimetric analysis, X-ray photoelectron spectroscopy (XPS), and scanning electron microscopy (SEM). In most cases, with increasing the adsorption time, the wettability of surface-modified membranes was significantly improved. Physical adsorption of hydrophilic polymers on hydrophobic membrane surfaces, facilitated by the salt-out effect, was almost achieved within a few minutes. Typically, a contact angle of 47° was observed at ionic strength (IS)=0.1Mg(NO3)2·6H2O and PVAm 2,000 ppm for a PSf membrane. The weight changes by adsorption were varied with adsorption time in the cases of PVSA and PSSA, while the weight change for PVAm approached the equilibrium rapidly after the initial adsorption time.

Keywords

hydrophobic membranes hydrophilic polymers salting-out ionic strength adsorption 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. (1).
    H. Matsumoto, Y. Koyama, and A. Tanioka, J. Colloid Interface Sci., 264, 82 (2003).CrossRefGoogle Scholar
  2. (2).
    M. Mulder, in Basic Principles of Membrane Technology, Kluwer Academic Publishers, Dordrecht, 1996, p 36.CrossRefGoogle Scholar
  3. (3).
    R. Molinari, P. Argurio, and L. Remeo, Desalination, 138, 271 (2001).CrossRefGoogle Scholar
  4. (4).
    A. Nabe, E. Staude, and G. Belfort, J. Memb. Sci., 133, 57 (1997).CrossRefGoogle Scholar
  5. (5).
    S. Belfer, J. Gilron, Y. Purinson, R. Fainshtain, N. Daltrophe, M. Priel, B. Tenzer, and A. Toma, Desalination, 139, 169 (2001).CrossRefGoogle Scholar
  6. (6).
    I. Gancarz, G. Pozniak, and M. Bryjak, Eur. Polym. J., 36, 1563 (2000).CrossRefGoogle Scholar
  7. (7).
    K. S. Kim, K. H. Lee, K. Cho, and C. E. Park, J. Memb. Sci., 199, 135 (2002).CrossRefGoogle Scholar
  8. (8).
    D. S. Wavhal and E. R. Fisher, Langmuir, 19, 79 (2003).CrossRefGoogle Scholar
  9. (9).
    P. Wang, K. L. Tan, E. T. Kang, and K. G. Neoh, J. Memb. Sci., 195, 103 (2002).CrossRefGoogle Scholar
  10. (10).
    M. Ulbricht and G. Belfort, J. Memb. Sci., 111, 193 (1996).CrossRefGoogle Scholar
  11. (11).
    S. Akhtar, C. Hawes, L. Dudley, I.. Reed, and P. Stratford, J. Memb. Sci., 107, 209 (1995).CrossRefGoogle Scholar
  12. (12).
    F. F. Stengaard, Desalination, 70, 207 (1988).CrossRefGoogle Scholar
  13. (13).
    K. B. Hvid, P. S. Neilsen, and F. F. Stengaard, J. Memb. Sci., 53, 189 (1990).CrossRefGoogle Scholar
  14. (14).
    L. Na, L. Zhongzhou, and X. Shuguang, J. Memb. Sci., 169, 17 (2000).CrossRefGoogle Scholar
  15. (15).
    G. Kang, M. Liu, B. Lin, Y. Cao, and Q. Yuan, Polymer, 48, 1165 (2007).CrossRefGoogle Scholar
  16. (16).
    W. J. Ward and T. J. McCarthy, In Encyclopedia of Polymer Science and Engineering, 2nd ed., H. F. Mark, N. M. Bikales, C. G. Overberger, G. Menges, and J. I. Kroschwitz, Eds., John Wiley and Sons, New York, 1989, Suppl. Vol., p 674.Google Scholar
  17. (17).
    M. S. Shoichet and T. J. McCarthy, Macromolecules, 24, 1441 (1991).CrossRefGoogle Scholar
  18. (18).
    M. Kozlov, M. Quarmyne, W. Chen, and T. J. McCarthy, Macromolecules, 36, 6054 (2003).CrossRefGoogle Scholar
  19. (19).
    T. Serizawa, S. Kamimura, N. Kawanishi, and M. Akashi, Langmuir, 18, 8381 (2002).CrossRefGoogle Scholar
  20. (20).
    B. Kim, H. Lee, B. Lee, S. Kim, S. I. Cheong, and J. W. Rhim, Polym. Korea, 35, 438 (2011).Google Scholar
  21. (21).
    M. J. Hey, D. P. Jackson, and H. Yan, Polymer, 46, 2567 (2005).CrossRefGoogle Scholar

Copyright information

© The Polymer Society of Korea and Springer Sciene+Business Media Dordrecht 2013

Authors and Affiliations

  • Seong Ihl Cheong
    • 1
  • Baekahm Kim
    • 1
  • Hakmin Lee
    • 1
  • Ji Won Rhim
    • 1
    Email author
  1. 1.Department of Chemical EngineeringHannam UniversityDaejeonKorea

Personalised recommendations