Macromolecular Research

, Volume 21, Issue 4, pp 362–369 | Cite as

Thermorheological complexity of a dynamically asymmetric miscible blend: the improving role of Na+-MMT nanoclay

  • Mahdi Ghelichi
  • Nader Taheri Qazvini
  • Seyed Hassan Jafari
  • Hossein Ali Khonakdar
Article

Abstract

The influence for the minor amount of sodium montmorillonite (Na+-MMT) nanoclay on the thermorheological complexity of a miscible blend of 20 wt% poly(ethylene oxide) (PEO) in poly(methyl methacrylate) (PMMA) is studied. The dispersion of Na+-MMT in the PEO/PMMA is assessed via X-ray diffraction. The empirical principle of time-temperature superposition is found to be partially restored in the case of blend nanocomposite, whereas it fails for the neat PEO/PMMA blend. The relaxation times of each component are determined from the oscillatory shear rheometry data in the form of a monomeric friction coefficient. The chain dynamics of components is coupled in the presence of hydrophilic nanoclay, which preferentially adsorbs PEO. The self-concentration model of Lodge and McLeish successfully describes the temperature dependence of the PMMA monomeric friction coefficient in both the neat and blend nanocomposite in regards to the temperature range studied.

Keywords

terminal dynamics thermorheological complexity nanoclay miscible blends 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. (1).
    R. H. Colby, Polymer, 30, 1275 (1989).CrossRefGoogle Scholar
  2. (2).
    J. Roovers and P. M. Toporowski, Macromolecules, 25, 3454 (1992).CrossRefGoogle Scholar
  3. (3).
    J. Roovers and P. M. Toporowski, Macromolecules, 25, 1096 (1992).CrossRefGoogle Scholar
  4. (4).
    J. A. Pathak, R. H. Colby, G. Floudas, and R. Jerome, Macromolecules, 32, 2553 (1999).CrossRefGoogle Scholar
  5. (5).
    C. A. Trask and C. M. Roland, Macromolecules, 22, 256 (1989).CrossRefGoogle Scholar
  6. (6).
    Y. He, T. R. Lutz, M. D. Ediger, M. Pitsikalis, N. Hadjichristidis, and E. D. von Meerwall, Macromolecules, 38, 6216 (2005).CrossRefGoogle Scholar
  7. (7).
    J. C. Haley and T. P. Lodge, J. Chem. Phys., 122, 234914 (2005).CrossRefGoogle Scholar
  8. (8).
    J. C. Haley, T. P. Lodge, Y. He, M. D. Ediger, E. D. von Meerwal, and J. Mijovic, Macromolecules, 36, 6142 (2003).CrossRefGoogle Scholar
  9. (9).
    J. B. Miller, K. J. McGrath, C. M. Roland, C. A. Trask, and A. N. Garroway, Macromolecules, 23, 4543 (1990).CrossRefGoogle Scholar
  10. (10).
    G. C. Chung, J. A. Kornfield, and S. D. Smith, Macromolecules, 27, 964 (1994).CrossRefGoogle Scholar
  11. (11).
    A. Alegria, J. Colmenero, K. L. Ngai, and C. M. Roland, Macromolecules, 27, 4486 (1994).CrossRefGoogle Scholar
  12. (12).
    C. M. Roland and K. L. Ngai, J. Rheol., 36, 1691 (1992).CrossRefGoogle Scholar
  13. (13).
    K. L. Ngai and D. J. Plazek, Macromolecules, 23, 4282 (1990).CrossRefGoogle Scholar
  14. (14).
    S. K. Kumar, R. H. Colby, S. H. Anastasiadis, and G. J. Fytas, J. Chem. Phys., 105, 3777 (1996).CrossRefGoogle Scholar
  15. (15).
    T. P. Lodge and T. C. B. McLeish, Macromolecules, 33, 5278 (2000).CrossRefGoogle Scholar
  16. (16).
    M. D. Ediger, T. R. Lutz, and Y. He, J. Non-Cryst. Solids, 352, 4718 (2006).CrossRefGoogle Scholar
  17. (17).
    J. C. Haley and T. P. Lodge, J. Colloid Polym. Sci., 282, 793 (2004).CrossRefGoogle Scholar
  18. (18).
    I. Hopkinson, F. T. Kiff, R. W. Richards, S. M. King, and T. Farren, Polymer, 36, 3523 (1995).CrossRefGoogle Scholar
  19. (19).
    H. Ito, T. P. Russell, and G. D. Wignall, Macromolecules, 20, 2213 (1987).CrossRefGoogle Scholar
  20. (20).
    M. Dionísio, A. C. Fernandes, J. F. Mano, N. T. Correia, and R. C. Sousa, Macromolecules, 33, 1002 (2000).CrossRefGoogle Scholar
  21. (21).
    A.-C. Genix, A. Arbe, F. Alvarez, J. Colmenero, L. Willner, and D. Richter, J. Phys. Rev. E, 72,(031808) 1 (2005).Google Scholar
  22. (22).
    J. A. Zawada, C. M. Ylitalo, G. G. Fuller, R. H. Colby, and T. E. Long, Macromolecules, 25, 2896 (1992).CrossRefGoogle Scholar
  23. (23).
    I. Zeroni, S. Ozair, and T. P. Lodge, Macromolecules, 41, 5033 (2008).CrossRefGoogle Scholar
  24. (24).
    A. C. Fernandes, J. W. Barlow, and D. R. Paul, J. Appl. Polym. Sci., 32, 5481 (1986).CrossRefGoogle Scholar
  25. (25).
    C. Silvestre, S. Cimmino, E. Martuscelli, F. E. Karasz, and W. J. MacKnight, Polymer, 28, 1190 (1987).CrossRefGoogle Scholar
  26. (26).
    T. R. Lutz, Y. He, M. D. Ediger, H. Cao, G. Lin, and A. A. Jones, Macromolecules, 36, 1724 (2003).CrossRefGoogle Scholar
  27. (27).
    S. Zhang, P. C. Painter, and J. Runt, Macromolecules, 35, 8478 (2002).CrossRefGoogle Scholar
  28. (28).
    A. N. Gaikwad, A. Choperena, P. C. Painter, and T. P. Lodge, Macromolecules, 43, 4814 (2010).CrossRefGoogle Scholar
  29. (29).
    Y. S. Lipatov, A. E. Nesterov, T. D. Ignatova, and D. A. Nesterov, Polymer, 43, 875 (2002).CrossRefGoogle Scholar
  30. (30).
    A. E. Nesterov and Y. S. Lipatov, Polymer, 40, 1347 (1999).CrossRefGoogle Scholar
  31. (31).
    Y. Wang, Q. Zhang, and Q. Fu, Macromol. Rapid Commun., 2003, 24, 231 (2003).Google Scholar
  32. (32).
    V. V. Ginzburg, Macromolecules, 38, 2362 (2005).CrossRefGoogle Scholar
  33. (33).
    Q. Fu, Q. Zhang, and H. Yang, Polymer, 45, 1913 (2004).CrossRefGoogle Scholar
  34. (34).
    M. Si, T. Araki, H. Ade, A. L. D. Kilcoyne, R. Fisher, J. C. Sokolov, and M. H. Rafailovich, Macromolecules, 39, 4793 (2006).CrossRefGoogle Scholar
  35. (35).
    A. Gharachorlou and F. Goharpey, Macromolecules, 41, 3276 (2008).CrossRefGoogle Scholar
  36. (36).
    T. Xia, Y. Huang, X. Peng, and G. Li, J. Macromol. Chem. Phys., 211, 2240 (2010).CrossRefGoogle Scholar
  37. (37).
    M. Ghelichi, N. T. Qazvini, S. H. Jafari, H. A. Khonakdar, and U. Reuter, J. Polym. Res., 19, 9830 (2012).CrossRefGoogle Scholar
  38. (38).
    J. A. Pathak, R. H. Colby, S. Y. Kamath, S. K. Kumar, and R. Stadler, Macromolecules, 31, 8988 (1998).CrossRefGoogle Scholar
  39. (39).
    M. Van Gurp and J. Palmen, J. Rheol. Bull., 67, 5 (1998).Google Scholar
  40. (40).
    S. S. Es-haghi, A. A. Yousefi, and A. Oromiehie, J. Polym. Sci. Part B: Polym. Phys., 45, 2860 (2007).CrossRefGoogle Scholar
  41. (41).
    M. J. Struglinski and W. W. Graessley, Macromolecules, 18, 2630 (1985).CrossRefGoogle Scholar
  42. (42).
    M. Doi and S. F. Edwards, The Theory of Polymer Dynamics, Oxford Univ. Press, Oxford, 1986.Google Scholar
  43. (43).
    J. D. Ferry, Viscoelastic Properties of Polymers, John Wiley & Sons, New York, 1980Google Scholar
  44. (44).
    B. H. Arendt, R. Krishnamoorti, J. A. Kornfield, and S. D. Smith, Macromolecules, 30, 1127 (1997).CrossRefGoogle Scholar
  45. (45).
    S. Wu, J. Polym. Sci. Part B: Polym. Phys., 27, 723 (1989).CrossRefGoogle Scholar
  46. (46).
    P. Lomellini and L. Lavagnini, Rheol. Acta, 31, 175 (1992).CrossRefGoogle Scholar
  47. (47).
    J. W. Chung, S. J. Han, and S.-Y. Kwak, Compos. Sci. Technol., 68, 1555 (2008).CrossRefGoogle Scholar
  48. (48).
    J. Y. Nam, S. S. Ray, and M. Okamoto, Macromolecules, 36, 7126 (2003).CrossRefGoogle Scholar
  49. (49).
    Q. Zhang and L. A. Archer, Langmuir, 18, 10435 (2002).CrossRefGoogle Scholar
  50. (50).
    R. A. Riggleman, G. T. Toepperwein, J. Papakonstantopouplos, J.-L. Barret, and J. J. de Pablo, J. Chem. Phys., 130, 244903 (2009).CrossRefGoogle Scholar
  51. (51).
    Y. Miwa, A. R. Drews, and S. Schlick, Macromolecules, 39, 3304 (2006).CrossRefGoogle Scholar
  52. (52).
    C. Lorthioir, F. Lauprêtre, J. Soulestin, and J.-M. Lefebvre, Macromolecules, 42, 218 (2009).CrossRefGoogle Scholar
  53. (53).
    Z. Shen, Y.-B. Cheng, and G. P. Simon, Macromolecules, 38, 1744 (2005).CrossRefGoogle Scholar
  54. (54).
    S. H. Zhang, X. Jin, P. C. Painter, and J. Runt, Macromolecules, 36, 5710 (2003).CrossRefGoogle Scholar
  55. (55).
    Y. He, T. R. Lutz, and M. D. Ediger, J. Chem. Phys., 119, 9956 (2003).CrossRefGoogle Scholar
  56. (56).
    T. P. Lodge, E. R. Wood, and J. C. Haley, J. Polym. Sci. Part B: Polym. Phys., 44, 756 (2006).CrossRefGoogle Scholar

Copyright information

© The Polymer Society of Korea and Springer Sciene+Business Media Dordrecht 2013

Authors and Affiliations

  • Mahdi Ghelichi
    • 1
  • Nader Taheri Qazvini
    • 2
  • Seyed Hassan Jafari
    • 1
  • Hossein Ali Khonakdar
    • 3
  1. 1.Department of Polymer, School of Chemical EngineeringUniversity of TehranTehranIran
  2. 2.School of Chemistry, College of ScienceUniversity of TehranTehranIran
  3. 3.Iran Polymer and Petrochemical InstituteTehranIran

Personalised recommendations