Macromolecular Research

, Volume 20, Issue 12, pp 1264–1270 | Cite as

Optimization of pancreatic islet spheroid using various concave patterned-films

  • Jin Wook Hwang
  • Min Jun Kim
  • Hyun Jin Kim
  • Yong Hwa Hwang
  • Sangwoo Yoon
  • MD Alam Zahid
  • Hae Song Jung
  • Sang Hoon Lee
  • Dong Yun Lee
Articles

Abstract

In the pancreatic islet transplantation for curing diabetes mellitus, reaggregation of pancreatic islet single cells for making ‘islet spheroid’ is considered as a useful strategy in terms of islet viability and gene delivery into islet. However, during aggregation of islet spheroid, their insulin secretion pattern was not recovered to that of intact islets. We have developed a new cell-culture system using poly(dimethylsiloxane) (PDMS)-based concave-patterned film for aggregating islet spheroid. Here we optimized the effective formation of islets spheroid by using the concave-patterned film with different microwell diameter (300, 500, and 700-μm). Aggregated islet spheroids in different concave microwells showed same morphology with a limited size range and diameter dependency of microwell, which was similar to that of intact islet. However, islet spheroid in flat-bottomed dish (control) showed random aggregation with broad size distribution. Interestingly, insulin secretion pattern of islet spheroids in 300 and 500-μm concave patterned-film was same to that of intact islets, which was caused by the improved cell-to-cell interaction that was confirmed by electron microscope and strong phalloidin immunostain. However, islet spheroids in concave patterned-film with 700-μm diameter and flat-dish did not show normal insulin secretion in accordance with different glucose concentration, which might be caused by weak cell-to-cell interaction. On the other hand, the viability of islet spheroids in concave patterned-film was not affected during cultivation due to biocompatibility of PDMS polymer. Collectively, we demonstrated that PDMS-based concave-patterned film could be used for designing islet spheroids with improved cellular functionality and size uniformity to cure diabetes mellitus.

Keywords

islet spheroid PDMS concave microwell viability insulin secretion phalloidin stain 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. (1).
    A. M. Shapiro, C. Ricordi, B. J. Hering, H. Auchincloss, R. Lindblad, R. P. Robertson, A. Secchi, M. D. Brendel, T. Berney, D. C. Brennan, E. Cagliero, R. Alejandro, E. A. Ryan, B. DiMercurio, P. Morel, K. S. Polonsky, J. A. Reems, R. G. Bretzel, F. Bertuzzi, T. Froud, R. Kandaswamy, D. E. Sutherland, G. Eisenbarth, M. Segal, J. Preiksaitis, G. S. Korbutt, F. B. Barton, L. Viviano, V. Seyfert-Margolis, J. Bluestone, and J. R. Lakey, New Engl. J. Med., 355, 1318 (2006).CrossRefGoogle Scholar
  2. (2).
    R. M. Leach and D. F. Treacher, BMJ, 317, 1370 (1998).CrossRefGoogle Scholar
  3. (3).
    P. O. Carlsson, F. Palm, A. Andersson, and P. Liss, Diabetes, 50, 489 (2001).CrossRefGoogle Scholar
  4. (4).
    I. F. Tannock, Br. J. Radiol., 45, 515 (1972).CrossRefGoogle Scholar
  5. (5).
    A. M. Davalli, Y. Ogawa, C. Ricordi, D. W. Scharp, S. Bonner-Weir, and G. C. Weir, Transplantation, 59, 817 (1995).Google Scholar
  6. (6).
    R. Lehmann, R. A. Zuellig, P. Kugelmeier, P. B. Baenninger, W. Moritz, A. Perren, P. A. Clavien, M. Weber, and G. A. Spinas, Diabetes, 56, 594 (2007).CrossRefGoogle Scholar
  7. (7).
    R. R. MacGregor, S. J. Williams, P. Y. Tong, K. Kover, W. V. Moore, and L. Stehno-Bittel, Am J. Physiol. Endocrinol. Metab., 290, E771 (2006).CrossRefGoogle Scholar
  8. (8).
    A. L. Gainer, G. S. Korbutt, R. V. Rajotte, G. L. Warnock, and J. F. Elliott, Transplantation, 63, 1017 (1997).CrossRefGoogle Scholar
  9. (9).
    K. Cheng, D. Fraga, C. Zhang, M. Kotb, A. O. Gaber, R. V. Guntaka, and R. I. Mahato, Gene Therapy, 11, 1105 (2004).CrossRefGoogle Scholar
  10. (10).
    A. S. Narang and R. I. Mahato, Pharmacol. Rev., 58, 194 (2006).CrossRefGoogle Scholar
  11. (11).
    I. Konstantinova, G. Nikolova, M. Ohara-Imaizumi, P. Meda, T. Kucera, K. Zarbalis, W. Wurst, S. Nagamatsu, and E. Lammert, Cell, 129, 359 (2007).CrossRefGoogle Scholar
  12. (12).
    A. Lim, S. H. Park, J. W. Sohn, J. H. Jeon, J. H. Park, D. K. Song, S. H. Lee, and W. K. Ho, Diabetes, 58, 2813 (2009).CrossRefGoogle Scholar
  13. (13).
    J. W. Hwang, B. R. Lee, M. J. Jung, H. S. Jung, Y. H. Hwang, M. J. Kim, S. H. Lee, and D. Y. Lee, Macromol. Res., 19, 1320 (2011).CrossRefGoogle Scholar
  14. (14).
    J. Y. Park, D. H. Lee, E. J. Lee, and S. H. Lee, Lab Chip, 9, 2043 (2009).CrossRefGoogle Scholar
  15. (15).
    Y. Y. Choi, B. G. Chung, D. H. Lee, A. Khademhosseini, J. H. Kim, and S. H. Lee, Biomaterials, 31, 4296 (2010).CrossRefGoogle Scholar
  16. (16).
    S. F. Wong, D. Y. No, Y. Y. Choi, D. S. Kim, B. G. Chung, and S. H. Lee, Biomaterials, 32, 8087 (2011).CrossRefGoogle Scholar
  17. (17).
    D. H. Lee, J. Y. Park, E. J. Lee, Y. Y. Choi, G. H. Kwon, B. M. Kim, and S. H. Lee, Biomed. Microdevices, 12, 49 (2010).CrossRefGoogle Scholar
  18. (18).
    P. A. Halban, S. L. Powers, K. L. George, and S. Bonner-Weir, Diabetes, 36, 783 (1987).CrossRefGoogle Scholar
  19. (19).
    M. A. Schwartz and E. J. Luna, J. Cell Biol., 102, 2067 (1986).CrossRefGoogle Scholar
  20. (20).
    R. M. Hernandez, G. G. Wescott, M. W. Mayhew, M. A. McJilton, and D. M. Terrian, J. Cell Biochem., 83, 532 (2001).CrossRefGoogle Scholar
  21. (21).
    S. H. Lee, D. H. Kang, H. N. Kim, and K. Y. Suh, Lab Chip, 10, 3300 (2010).CrossRefGoogle Scholar
  22. (22).
    T. G. van Kooten, J. F. Whitesides, and A. von Recum, J. Biomed. Mater. Res., 43, 1 (1998).CrossRefGoogle Scholar
  23. (23).
    J. A. Cooper, J. Cell. Biol., 105, 1473 (1987).CrossRefGoogle Scholar
  24. (24).
    H. C. Cable, A. El-Mansoury, and N. G. Morgan, Biochem. J., 307(Pt 1), 169 (1995).Google Scholar
  25. (25).
    E. S. O’sullivan, A. S. Johnson, A. Omer, J. Hollister-Lock, S. Bonner-Weir, C. K. Colton, and G. C. Weir, Diabetologia, 53, 937 (2010).CrossRefGoogle Scholar
  26. (26).
    D. Y. Lee, S. J. Park, J. H. Nam, and Y. Byun, J. Biomater. Sci. Polym. Ed., 19, 441 (2008).CrossRefGoogle Scholar
  27. (27).
    G. Cavallari, R. A. Zuellig, R. Lehmann, M. Weber, and W. Moritz, Transplant. Proc., 39, 2018 (2007).CrossRefGoogle Scholar
  28. (28).
    S. G. Matta, J. D. Wobken, F. G. Williams, and G. E. Bauer, Pancreas, 9, 439 (1994).CrossRefGoogle Scholar

Copyright information

© The Polymer Society of Korea and Springer Sciene+Business Media Dordrecht 2012

Authors and Affiliations

  • Jin Wook Hwang
    • 1
  • Min Jun Kim
    • 1
  • Hyun Jin Kim
    • 1
    • 2
  • Yong Hwa Hwang
    • 1
  • Sangwoo Yoon
    • 1
  • MD Alam Zahid
    • 1
  • Hae Song Jung
    • 1
  • Sang Hoon Lee
    • 4
  • Dong Yun Lee
    • 1
    • 3
  1. 1.Departments of Bioengineering, College of Engineering, and Institute for Bioengineering and Biopharmaceutical ResearchHanyang UniversitySeoulKorea
  2. 2.Department of Molecular Medicine and Biopharmaceutical Sciences, College of PharmacySeoul National UniversitySeoulKorea
  3. 3.Hanyang University Institute of Aging SocietySeoulKorea
  4. 4.Departments of Biomedical Engineering, College of Health ScienceKorea UniversitySeoulKorea

Personalised recommendations