Macromolecular Research

, Volume 20, Issue 10, pp 1021–1028 | Cite as

Synthesis and characterization of water soluble functionalized amorphous carbon nanotube-poly(vinyl alcohol) composite

  • Diptonil Banerjee
  • Arunava Jha
  • Kalyan Kumar Chattopadhyay


A simple low-temperature synthesis method of amorphous carbon nanotubes (a-CNTs) and poly(vinyl alcohol) (PVA) composite thin films has been reported. Initially the a-CNTs have been functionalized by acid treatment for getting better dispersion in water. The functionalized a-CNTs show much enhanced solubility in water. The microstructures of the as-prepared tubes, functionalized tubes, and PVA-a-CNTs composite have been investigated with the help of a field emission scanning electron microscope. A detailed study on the structural, optical, and thermal properties and a hardness test of the composite has revealed that a-CNTs can act as good reinforcement materials such as crystalline CNTs, when composites are made with polymers. Also, it has been shown that the sheet resistance of the PVA-a-CNTs composite monotonically decreases with increasing a-CNTs concentrations in the composites. Optical studies showed a shift in the optical gap indicating the formation of cross-linking into the host matrix. The composite shows a higher crystallinity with increased a-CNTs concentration, compared to pure PVA. The swelling test shows that due to the introduction of the carboxylic group into a-CNTs’ walls, it gradually becomes hydrophilic.


amorphous materials polymer chemical synthesis electron microscopy optical properties 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. (1).
    Z. Q. Ma and B. X. Liu, Sol. Energy Mater. Sol. Cells, 69, 339 (2001).CrossRefGoogle Scholar
  2. (2).
    F. Y. Chuang, C. Y. Sun, H. F. Cheng, W. C. Wang, and I. N. Lin, Appl. Surf. Sci., 113–114, 259 (1997).CrossRefGoogle Scholar
  3. (3).
    S. H. Hong and J. J. Winter, Appl. Phys., 98, 124304 (2005).Google Scholar
  4. (4).
    S. Kumar, P. N. Dixit, O. S. Panwar, and R. Bhattacharya, Diam. Relat. Mater., 12, 1576 (2003).CrossRefGoogle Scholar
  5. (5).
    S. Iijima, Nature, 354, 56 (1991).CrossRefGoogle Scholar
  6. (6).
    S. Hofmann, C. Ducati, B. Kleinsorge, and J. Robertson, Appl. Phys. Lett., 83, 4661 (2003).CrossRefGoogle Scholar
  7. (7).
    B. Liu, D. Jia, Y. Zhou, H. Feng, and Q. Meng, Carbon, 45, 1710 (2007).CrossRefGoogle Scholar
  8. (8).
    Y. Xiong, Y. Xie, X. Li, and Z. Li, Carbon, 42, 1447 (2004).CrossRefGoogle Scholar
  9. (9).
    A. Jha, D. Banerjee, and K. K. Chattopadhyay, Carbon, 49, 1272 (2011).CrossRefGoogle Scholar
  10. (10).
    S. F. Ahmed, S. Das, M. K. Mitra, and K. K. Chattopadhyay, Appl. Surf. Sci., 254, 610 (2007).CrossRefGoogle Scholar
  11. (11).
    T. Sun, G. Wang, H. Liu, L. Feng, L. Jiang, and D. Zhu, J. Am. Chem. Soc., 125, 14996 (2003).CrossRefGoogle Scholar
  12. (12).
    K. Awasthi, S. Awasthi, A. Srivastava, R. Kamalakaran, S. Talapatra, P. M. Ajayan, and O. N. Srivastava, Nanotechnology, 17, 5417 (2006).CrossRefGoogle Scholar
  13. (13).
    C. Basavaraja, B. S. Kim, and D. S. Huh, Macromol. Res., 19, 233 (2011).CrossRefGoogle Scholar
  14. (14).
    Y. W. Jin, J. E. Jung, Y. J. Park, J. H. Choi, D. S. Jung, H. W. Lee, S. H. Park, N. S. Lee, J. M. Kim, T. Y. Ko, S. J. Lee, S. Y. Hwang, J. H. You, J. B. Yoo, and C. Y. Park, J. Appl. Phys., 92, 1065 (2002).CrossRefGoogle Scholar
  15. (15).
    M. Naebe, T. Lin, M. P. Staiger, L. Dai, and X. Wang, Nanotechnology, 19, 305702 (2008).CrossRefGoogle Scholar
  16. (16).
    M. Cadek, J. N. Coleman, V. Barron, K. Hedicke, and W. J. Blau, Appl. Phys. Lett., 81, 5123 (2002).CrossRefGoogle Scholar
  17. (17).
    W. Chen, X. Tao, P. Xue, and X. Cheng, Appl. Surf. Sci., 252, 1404 (2005).CrossRefGoogle Scholar
  18. (18).
    W. Yang, P. Thordarson, J. J. Gooding, S. P. Ringer, and P. Braet, Nanotechnology, 18, 412001 (2007).CrossRefGoogle Scholar
  19. (19).
    M. Ferrari, Cancer, 5, 161 (2005).Google Scholar
  20. (20).
    S. Kang, M. Pinault, L. D. Pfefferle, and M. Elimelech, Langmuir, 23, 8670 (2007).CrossRefGoogle Scholar
  21. (21).
    A. G. Osorio, I. C. L. Silveira, V. L. Bueno, and C. P. Bergmann, Appl. Surf. Sci., 255, 2485 (2008).CrossRefGoogle Scholar
  22. (22).
    R. M. Khashaba, M. Moussa, C. Koch, A. R. Jurgensen, D. M. Missimer, R. L. Rutherford, N. B. Chutkan, and J. L. Borke, Int. J. Biomater., 2011, 467641 (2011).Google Scholar
  23. (23).
    M. Naebe, T. Lin, W. Tian, L. Dai, and X. Wang, Nanotechnology, 18, 225605 (2007).CrossRefGoogle Scholar
  24. (24).
    M. L. Minus, H. G. Chae, and S. Kumar, Polymer, 47, 3705 (2006).CrossRefGoogle Scholar
  25. (25).
    I. Dubnikova, E. Kuvardina, V. Krasheninnikov, S. Lomakin, I. Tchmutin, and S. Kuznetsov, J. Appl. Polym. Sci., 117, 259 (2010).Google Scholar
  26. (26).
    E. V. Basiuk, A. Anis, S. Bandyopadhyaya, E. A. Zauco, S. L. I. Chana, and V. A. Basiuk, Superlattices Microstruct., 46, 379 (2009).CrossRefGoogle Scholar
  27. (27).
    R. F. Bhajantri, V. Ravindrachary, A. Harisha, V. Crasta, S. P. Nayak, and B. Poojary, Polymer, 47, 3591 (2006).CrossRefGoogle Scholar
  28. (28).
    C. U. Devi, A. K. Sharma, and V. V. R. N. Rao, Mater. Lett., 56, 167 (2002).CrossRefGoogle Scholar
  29. (29).
    C. Bartholome, P. Miaudet, A. Derré, M. Maugey, O. Roubeau, C. Zakri, and P. Poulin, Compos. Sci. Technol., 68, 2568 (2008).CrossRefGoogle Scholar
  30. (30).
    R. Ricciardi, F. Auriemma, C. Gaillet, C. De Rosa, and F. Lauprêtre, Macromolecules, 37, 9510 (2004).CrossRefGoogle Scholar
  31. (31).
    X. Tong, J. Zheng, Y. Lu, Z. Zhang, and H. Cheng, Mater. Lett., 61, 1704 (2007).CrossRefGoogle Scholar
  32. (32).
    C. A. Dai, C. C. Hsiao, S. C. Weng, A. C. Kao, C. P. Liu, W. B. Tsai, W. S. Chen, W. M. Liu, W. P. Shih, and C. C. Ma, Smart Mater. Struct., 18, 085016 (2009).CrossRefGoogle Scholar
  33. (33).
    Z. Wang, P. Ciselli, and T. Peijs, Nanotechnology, 18, 455709 (2007).CrossRefGoogle Scholar
  34. (34).
    B. X. Yang, J. H. Shi, K. P. Pramoda, and S. H. Goh, Compos. Sci. Technol., 68, 2490 (2008).CrossRefGoogle Scholar
  35. (35).
    B. Zhao, J. Wang, Z. Li, P. Liu, D. Chen, and Y. Zhang, Mater. Lett., 62, 4380 (2008).CrossRefGoogle Scholar

Copyright information

© The Polymer Society of Korea and Springer Netherlands 2012

Authors and Affiliations

  • Diptonil Banerjee
    • 1
  • Arunava Jha
    • 1
  • Kalyan Kumar Chattopadhyay
    • 1
    • 2
  1. 1.Thin Film & Nanoscience Laboratory, Department of PhysicsJadavpur UniversityKolkataIndia
  2. 2.Nanoscience and Technology CenterJadavpur UniversityKolkataIndia

Personalised recommendations