Advertisement

Macromolecular Research

, Volume 20, Issue 7, pp 659–666 | Cite as

Effect of initial melting temperature on crystallization of polypropylene/organoclay nanocomposites

  • Petr SvobodaEmail author
  • Krunal Trivedi
  • Dagmar Svobodova
  • Pavel Mokrejs
  • Karel Kolomaznik
Article

Abstract

Polypropylene (PP) nanocomposites were prepared by melt intercalation using an intermeshing co-rotating twin-screw extruder. The influence of organoclay (Cloisite 20A) and maleic anhydride modified polypropylene (PP-MA) on various properties was explored. The effect of the initial melting temperature on crystallization kinetics was investigated by differential scanning calorimetry (DSC) and optical microscopy. DSC has revealed a gradual decrease in crystallization kinetics with an increase in initial melting temperature for two-component systems (PP/PP-MA and PP/20A). However, in the case of a three-component system (PP/PP-MA/20A), the decrease of crystallization kinetics in the range of initial melting temperature being 200–240 °C was followed by an increase in the temperature range 240–260 °C. After initial melting at 250 °C, many spherulites were discovered in the three-component system. This unusual crystallization behavior was explained with the help of Fourier transform infrared spectroscopy (FTIR), where an increase in the Si-O peak with the increasing initial melting temperature was detected, which indicates the presence of large surface of clay layers. The morphology of nanocomposites was also investigated by transmission electron microscopy (TEM). The X-ray diffraction (XRD) analysis has revealed a decrease in the peak intensity with an increase in initial melting temperature, which suggests exfoliation caused by fast diffusion at high temperatures.

Keywords

polypropylene nanocomposite organoclay intercalation crystallization kinetics 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. (1).
    Y. W. Chang, J. Y. Shin, and S. H. Ryu, Polym. Int., 53, 1047 (2004).CrossRefGoogle Scholar
  2. (2).
    X. B. Hu and A. J. Lesser, Macromol. Chem. Phys., 205, 574 (2004).CrossRefGoogle Scholar
  3. (3).
    Y. Kojima, A. Usuki, M. Kawasumi, A. Okada, T. Kurauchi and O. Kamigaito, J. Polym. Sci. Part A: Polym. Chem., 31, 983 (1993).CrossRefGoogle Scholar
  4. (4).
    Y. T. Vu, G. S. Rajan, J. E. Mark, and C. L. Myers, Polym. Int., 53, 1071 (2004).CrossRefGoogle Scholar
  5. (5).
    Z. M. Wang, H. Nakajima, E. Manias, and T. C. Chung, Macromolecules, 36, 8919 (2003).CrossRefGoogle Scholar
  6. (6).
    N. Artzi, A. Tzur, M. Narkis, and A. Siegmann, Polym. Compos., 26, 343 (2005).CrossRefGoogle Scholar
  7. (7).
    H. Mirzazadeh and A. A. Katbab, Polym. Adv. Technol., 17, 975 (2006).CrossRefGoogle Scholar
  8. (8).
    F. Perrin-Sarazin, M. T. Ton-That, M. N. Bureau, and J. Denault, Polymer, 46, 11624 (2005).CrossRefGoogle Scholar
  9. (9).
    M. T. Ton-That, F. Perrin-Sarazin, K. C. Cole, M. N. Bureau, and J. Denault, Polym. Eng. Sci., 44, 1212 (2004).CrossRefGoogle Scholar
  10. (10).
    J. S. Ma, Z. N. Qi, G. Li, and Y. L. Hu, Acta Polym. Sin., 589 (2001).Google Scholar
  11. (11).
    A. Pawlak, J. Morawiec, E. Piorkowska, and A. Galeski, in Interfacial Effects and Novel Properties of Nanomaterials, W. Lojkowski and J. R. Blizzard, Eds., Trans Tech Publications Ltd, Zurich-Uetikon, 2003, Vol. 94, p 335.Google Scholar
  12. (12).
    E. Pavlidou, D. Bikiaris, A. Vassiliou, M. Chiotelli, and G. Karayannidis, in Second Conference on Microelectronics, Microsystems and Nanotechnology, A. G. Nassiopoulou, N. Papanikolaou, and C. Tsamis, Eds., Iop Publishing Ltd, Bristol, 2005, Vol. 10, p 190.Google Scholar
  13. (13).
    M. Kawasumi, N. Hasegawa, M. Kato, A. Usuki, and A. Okada, Macromolecules, 30, 6333 (1997).CrossRefGoogle Scholar
  14. (14).
    T. Xu, J. Yu, and Z. H. Jin, Mater. Des., 22, 27 (2001).CrossRefGoogle Scholar
  15. (15).
    M. Avella, S. Cosco, M. L. Di Lorenzo, E. D. Pace, M. E. Errico, and G. Gentile, Macromol. Symp., 234, 156 (2006).CrossRefGoogle Scholar
  16. (16).
    T. S. Ellis and J. S. D’Angelo, J. Appl. Polym. Sci., 90, 1639 (2003).CrossRefGoogle Scholar
  17. (17).
    G. S. Jang, W. J. Cho, and C. S. Ha, J. Polym. Sci. Part B: Polym. Phys., 39, 1001 (2001).CrossRefGoogle Scholar
  18. (18).
    V. Mittal, J. Appl. Polym. Sci., 107, 1350 (2008).CrossRefGoogle Scholar
  19. (19).
    D. Page and T. G. Gopakumar, Polym. J., 38, 920 (2006).CrossRefGoogle Scholar
  20. (20).
    Y. Wang, F. B. Chen, Y. C. Li, and K. C. Wu, Compos. Part B: Eng., 35, 111 (2004).CrossRefGoogle Scholar
  21. (21).
    J. M. Cervantes-Uc, J. V. Cauich-Rodriguez, H. Vazquez-Torres, L. F. Garfias-Mesias, and D. R. Paul, Thermochim. Acta, 457, 92 (2007).CrossRefGoogle Scholar

Copyright information

© The Polymer Society of Korea and Springer Netherlands 2012

Authors and Affiliations

  • Petr Svoboda
    • 1
    Email author
  • Krunal Trivedi
    • 1
  • Dagmar Svobodova
    • 2
  • Pavel Mokrejs
    • 1
  • Karel Kolomaznik
    • 3
  1. 1.Centre of Polymer Systems, Faculty of TechnologyTomas Bata University in ZlinZlinCzech Republic
  2. 2.Faculty of HumanitiesTomas Bata University in ZlinZlinCzech Republic
  3. 3.Faculty of Applied InformaticsTomas Bata University in ZlinZlinCzech Republic

Personalised recommendations