Macromolecular Research

, Volume 20, Issue 2, pp 128–137 | Cite as

Syntheses of organic dyes based on phenothiazine as photosensitizers and effects of their π-conjugated bridges on the photovoltaic performances of dye-sensitized solar cells

  • Ki-Hyun Kim
  • Seung-Min Lee
  • Min-Hye Seo
  • Sang-Eun Cho
  • Won-Pill Hwang
  • Sung-Hae Park
  • Young-Keun Kim
  • Jin-Kook Lee
  • Mi-Ra Kim
Articles

Abstract

Three organic dyes, 2-cyano-3-(N-hexylphenothiazine-3-yl)acrylic acid (H-PTZ), 2-cyano-3-(5′-(2-(Nhexylphenothiazine-3-yl)vinyl)-2,2′-bithiophen-5-yl)acrylic acid (H-PTZ-BT), and 2-cyano-3-(5-(4-((4-(2-(N-hexylphenothiazine-3-yl)vinyl)phenyl)(phenyl)amino)phenyl)thiophen-2-yl)acrylic acid (H-PTZ-TPA-T), based on the phenothiazine (PTZ) unit as an electron donor moiety and cyanoacrylic acid unit as an electron acceptor moiety were synthesized to study the effect of a π-conjugated bridge of the dye on the performance of the resulting dye-sensitized solar cells devices. The thiophene unit and triphenylamine were introduced as a π-conjugated bridge. The H-PTZTPA-T-sensitized cell showed the highest overall conversion efficiency of 4.01% (Jsc: 9.64 mA·cm−2; Voc: 0.69 V; FF: 0.60), while the H-PTZ-sensitized cell showed the lowest value of 3.57% (Jsc: 7.76 mA·cm−2; Voc: 0.70 V; FF: 0.65) among the cells based on the three organic dyes compared to 5.09% for the cell based on the N719 dye (Jsc: 12.77 mA·cm−2; Voc: 0.72 V; FF: 0.55) under AM 1.5 illumination (100 mW·cm−2).

Keywords

dyes photovoltaic effect phenothiazine sensitizers dye-sensitized solar cells 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. (1).
    M. Grätzel, J. Photochem. Photobiol. C 4, 145 (2003).CrossRefGoogle Scholar
  2. (2).
    F. T. Kong, S. Y. Dai, and K. J. Wang, Adv. OptoElectron, 75384 (2007).Google Scholar
  3. (3).
    N. G. Park, J. van de Lagemaat, and A. J. Frank, J. Phys. Chem. B, 104, 8989 (2000).CrossRefGoogle Scholar
  4. (4).
    M. K. Nazeeruddin, A. Kay, I. Rodicio, R. Humphry-Baker, E. Müller, P. Liska, N. Vlachopoulos, and M. Grätzel, J. Am. Chem. Soc., 115, 6382 (1993).CrossRefGoogle Scholar
  5. (5).
    Q. B. Meng, K. Takahashi, X. T. Zhang, I. Sutanto, T. N. Rao, O. Sato, A. Fujishima, H. Watanabe, T. Nakamori, and M. Uragami, Langmuir, 19, 3572 (2003).CrossRefGoogle Scholar
  6. (6).
    N. Robertson, Angew. Chem. Int. Ed. 45, 2338 (2006).CrossRefGoogle Scholar
  7. (7).
    A. Hauch and A. Georg, Electrochim. Acta, 46, 3457 (2001).CrossRefGoogle Scholar
  8. (8).
    M. Grätzel, Acc. Chem. Res., 42, 1788 (2009).CrossRefGoogle Scholar
  9. (9).
    M. K. Nazeeruddin, F. D. Angelis, S. Fantacci, A. Selloni, G. Viscardi, P. Liska, S. Ito, B. Takeru, and M. Grätzel, J. Am. Chem. Soc., 127, 16835 (2005).CrossRefGoogle Scholar
  10. (10).
    M. K. Nazeeruddin, P. Pechy, T. Renouard, S. M. Zakeeruddin, R. Humphry-Baker, P. Comte, P. Liska, L. Cevey, E. Costa, V. Shklover, L. Spiccia, G. B. Deacon, C. A. Bignozzi, and M. Grätzel, J. Am. Chem. Soc., 123, 1613 (2001).CrossRefGoogle Scholar
  11. (11).
    F. Gao, Y. Wang, J. Zhang, D. Shi, M. Wang, R. Humphry-Baker, P. Wang, S. M. Zakeeruddin, and M. Grätzel, Chem. Commun., 23, 2635 (2008).CrossRefGoogle Scholar
  12. (12).
    F. Gao, Y. Wang, D. Shi, J. Zhang, M. Wang, X. Jing, R. Humphry-Baker, P. Wang, S. M. Zakeeruddin, and M. Grätzel, J. Am. Chem. Soc., 130, 10720 (2008).CrossRefGoogle Scholar
  13. (13).
    Y. Ooyama and Y. Harima, Eur. J. Org. Chem., 18, 2903 (2009).CrossRefGoogle Scholar
  14. (14).
    K. Sayama, S. Tsukagoshi, T. Mori, K. Hara, Y. Ohga, A. Shinpou, Y. Abe, S. Suga, and H. Arakawa, Sol. Energy Mater. Sol. Cells, 80, 47 (2003).CrossRefGoogle Scholar
  15. (15).
    J. R. Lenhard and J. R. Hein, J. Phys. Chem., 100, 17287 (1996).CrossRefGoogle Scholar
  16. (16).
    T. Horiuchi, H. Miura, and S. Uchida, J. Photochem. Photobiol. A, 164, 29 (2004).CrossRefGoogle Scholar
  17. (17).
    S. H. Kim, J. K. Lee, S. O. Kang, J. J. Ko, J. H. Yum, S. Fantacci, F. D. Angelis, D. D. Censo, M. K. Nazeeruddin, and M. Grätzel, J. Phys. Chem., 128, 16701 (2006).Google Scholar
  18. (18).
    Z. Ning and H. Tian, Chem. Commun., 37, 5483 (2009).CrossRefGoogle Scholar
  19. (19).
    P. Shen, Y. Liu, X. Huang, B. Zhao, N. Xiang, J. Fei, L. Liu, X. Wang, H. Huang, and S. Tan, Dyes. Pigm., 83, 187 (2009).CrossRefGoogle Scholar
  20. (20).
    N. R. Cho, H. B. Choi, D. H. Kim, K. H. Song, M. S. Kang, S. O. Kang, and J. J. Ko, Tetrahedron, 65, 6236 (2009).CrossRefGoogle Scholar
  21. (21).
    N. Koumura, Z. S. Wang, S. Mori, M. Miyashita, E. Suzuki, and K. Hara, J. Am. Chem. Soc., 128, 14256 (2006).CrossRefGoogle Scholar
  22. (22).
    Z. S. Wang, N. Koumura, Y. Cui, M. Takahashi, H. Sekiguchi, A. Mori, T. Kubo, A. Furube, and K. Hara, Chem. Mater., 20, 3993 (2008).CrossRefGoogle Scholar
  23. (23).
    R. Chen, X. Yang, H. Tian, X. Wang, A. Hagfeldt, and L. Sun, Chem. Mater., 19, 4007 (2007).CrossRefGoogle Scholar
  24. (24).
    Z. S. Wang, Y. Cui, Y. Dan-oh, C. Kasada, A. Shinpo, and K. Hara, J. Phys. Chem. C, 111, 7224 (2007).CrossRefGoogle Scholar
  25. (25).
    Z. Chena, F. Lia, and C. Huanga, Curr. Org. Chem., 11, 1241 (2007).CrossRefGoogle Scholar
  26. (26).
    A. Mishra, M. K. R. Fischer, and P. Bauerle, Angew. Chem. Int. Ed., 48, 2474 (2009).CrossRefGoogle Scholar
  27. (27).
    K. Hara, K. Miyamoto, Y. Abe, and M. Yanagida, J. Phys. Chem. B, 109, 23776 (2005).CrossRefGoogle Scholar
  28. (28).
    T. Horiuchi, H. Miura, K. Sumioka, and S. Uchida, J. Am. Chem. Soc., 126, 12218 (2004).CrossRefGoogle Scholar
  29. (29).
    D. P. Hagberg, J. H. Yum, H. J. Lee, F. D. Angelis, T. Marinado, K. M. Karlsson, R. Humphry-Baker, L. Sun, A. Hagfeldt, M. Grätzel, and M. K. Nazeeruddin, J. Am. Chem. Soc., 130, 6259 (2008).CrossRefGoogle Scholar
  30. (30).
    K. Sayama, K. Hara, Y. Ohga, A. Shinpou, S. Suga, and H. Arakawa, New J. Chem., 25, 200 (2001).CrossRefGoogle Scholar
  31. (31).
    Y. S. Chen, C. Li, Z. H. Zeng, W. B. Wang, X. S. Wang, and B. W. Zhang, J. Mater. Chem., 15, 1654 (2005).CrossRefGoogle Scholar
  32. (32).
    S. Eu, S. Hayashi, T. Umeyama, A. Oguro, M. Kawasaki, N. Kadota, Y. Matano, and H. Imahori, J. Phys. Chem. C, 111, 3528 (2007).CrossRefGoogle Scholar
  33. (33).
    S. Eu, T. Katoh, T. Umeyama, Y. Matano, and H. Imahori, Dalton Trans., 40, 5476 (2008).CrossRefGoogle Scholar
  34. (34).
    G. Lai, X. R. Bu, J. Santos, and E. A. Mintz, Synlett, 11, 1275 (1997).CrossRefGoogle Scholar
  35. (35).
    M. L. Wang, B. L. Liu, and S. J. Lin, J. Chin. Ins. Chem. Eng., 38, 451 (2007).CrossRefGoogle Scholar
  36. (36).
    A. Suzuki, J. Organomet. Chem., 576, 147 (1999).CrossRefGoogle Scholar
  37. (37).
    E. Knoevenagel, Chem. Ber., 31, 2596 (1898).CrossRefGoogle Scholar
  38. (38).
    M. K. Nazeeruddin, S. M. Zakeeruddin, R. Humphry-Baker, M. Jirousek, P. Liska, N. Vlachopoulos, V. Shklover, C. Fischer, and M. Grätzel, Inorg. Chem., 38, 6298 (1999).CrossRefGoogle Scholar
  39. (39).
    I. Jung, J. K. Lee, K. H. Song, K. H. Song, S. O. Kang, and J. J. Ko, J. Org. Chem., 72, 3652 (2007).CrossRefGoogle Scholar
  40. (40).
    A. Hagfeldtt and M. Grätzel, Chem. Rev., 95, 49 (1995).CrossRefGoogle Scholar
  41. (41).
    K. Kalyanasundaram, and M. Grätzel, Coord. Chem. Rev., 77, 347 (1998).CrossRefGoogle Scholar
  42. (42).
    K. Hara, T. Sato, R. Katoh, A. Furube, Y. Ohga, A. Shinpo, S. Suga, K. Sayama, H. Sugihara, and H. Arakawa, J. Phys. Chem. B, 107, 597 (2003).CrossRefGoogle Scholar
  43. (43).
    M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M. A. Robb, J. R. Cheeseman, J. A. Montgomery, Jr., T. Vreven, K. N. Kudin, J. C. Burant, J. M. Millam, S. S. Iyengar, J. Tomasi, V. Barone, B. Mennucci, M. Cossi, G. Scalmani, N. Rega, G. A. Petersson, H. Nakatsuji, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, M. Klene, X. Li, J. E. Knox, H. P. Hratchian, J. B. Cross, C. Adamo, J. Jaramillo, R. Gomperts, R. E. Stratmann, O. Yazyev, A. J. Austin, R. Cammi, C. Pomelli, J. W. Ochterski, P. Y. Ayala, K. Morokuma, G. A. Voth, P. Salvador, J. J. Dannenberg, V. G. Zakrzewski, S. Dapprich, A. D. Daniels, M. C. Strain, O. Farkas, D. K. Malick, A. D. Rabuck, K. Raghavachari, J. B. Foresman, J. V. Ortiz, Q. Cui, A. G. Baboul, S. Clifford, J. Cioslowski, B. B. Stefanov, G. Liu, A. Liashenko, P. Piskorz, I. Komaromi, R. L. Martin, D. J. Fox, T. Keith, M. A. Al-Laham, C. Y. Peng, A. Nanayakkara, M. Challacombe, P. M. W. Gill, B. Johnson, W. Chen, M. W. Wong, C. Gonzalez, and J. A. Pople, Gaussian 03, Revision A. 01, Gaussian, Inc., Pittsburgh, 2003.Google Scholar
  44. (44).
    R. Kern, R. Sastrawan, J. Ferber, R. Stangl, and J. Luther, Electrochim. Acta, 47, 4213 (2002).CrossRefGoogle Scholar
  45. (45).
    D. Kuang, S. Uchida, R. Humphry-Baker, S. M. Zakeeruddin, and M. Grätzel, Angew. Chem. Int. Ed., 47, 1923 (2008).CrossRefGoogle Scholar

Copyright information

© The Polymer Society of Korea and Springer Netherlands 2012

Authors and Affiliations

  • Ki-Hyun Kim
    • 1
  • Seung-Min Lee
    • 1
  • Min-Hye Seo
    • 1
  • Sang-Eun Cho
    • 1
  • Won-Pill Hwang
    • 1
  • Sung-Hae Park
    • 1
  • Young-Keun Kim
    • 1
  • Jin-Kook Lee
    • 1
  • Mi-Ra Kim
    • 1
  1. 1.Department of Polymer Science & EngineeringPusan National UniversityBusanKorea

Personalised recommendations