Advertisement

Macromolecular Research

, Volume 20, Issue 1, pp 51–58 | Cite as

Fabrication of an antibacterial non-woven mat of a poly(lactic acid)/chitosan blend by electrospinning

  • Hang Thi Au
  • Lan Ngoc Pham
  • Thu Ha Thi Vu
  • Jun Seo ParkEmail author
Articles

Abstract

Nonwoven mats made of a poly(lactic acid)/chitosan (PLA/CS) blend and a PLA/CS blend containing silver (Ag) nanoparticles (Ag/PLA/CS) were prepared using an electrospinning technique. The morphology of electrospun fibers was observed by field emission scanning electron microscopy. The addition of AgNO3 to the PLA/CS blend solution improved the electrospinning ability of the PLA/CS blend. The average diameters of the electrospun PLA/CS and Ag/PLA/CS blend fibers decreased as CS content increased. The Ag particles were evenly distributed in PLA/CS ultrafine fibers observed under transmission electron microscopy. Ag nanoparticles were spontaneously generated during the electrospinning process. When the CS content in the blend increased, the size of the Ag nanoparticles on the surface of the electrospun fibers increased as well. The thermal and mechanical properties of the nonwoven mats were examined by differential scanning calorimetry and a tensile tester. Fourier transform infrared spectroscopy was used to characterize the molecular interactions among PLA, Ag, and CS in the blends. The antibacterial activity of the nonwoven mats against Escherichia coli and Staphylococcus aureus was studied using an optical density method. Open image in new window

Keywords

chitosan poly(lactic acid) silver nanoparticles antibacterial activity electrospinning 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. (1).
    J. Xu, J. Zhang, W. Gao, H. Liang, H. Wang, and J. Li, Mater. Lett., 63, 658 (2009).CrossRefGoogle Scholar
  2. (2).
    M. Ignatova, K. Starbova, N. Markova, N. Manolova, and I. Rashkov, Carbohydr. Res., 341, 2098 (2006).CrossRefGoogle Scholar
  3. (3).
    S. Torres-Giner, M. Ocio, and J. Lagaron, Eng. Life Sci., 8, 303 (2008).CrossRefGoogle Scholar
  4. (4).
    W. K. Son, J. H. Youk, and W. H. Park, Carbohydr. Polym., 65, 430 (2006).CrossRefGoogle Scholar
  5. (5).
    D. Wei, W. Sun, W. Qian, Y. Ye, and X. Ma, Carbohydr. Res., 344, 2375 (2009).CrossRefGoogle Scholar
  6. (6).
    K. G. G. V. Natarajan, S. S. Han, K. S. Nahm, and Y. S. Lee, Iran. Polym. J., 18, 383 (2009).Google Scholar
  7. (7).
    W.-J. Jin, H. J. Jeon, J. H. Kim, and J. H. Youk, Synth. Met., 157, 454 (2007).CrossRefGoogle Scholar
  8. (8).
    C. Chen, L. Dong, and M. K. Cheung, Eur. Polym. J., 41, 958 (2005).CrossRefGoogle Scholar
  9. (9).
    W. H. Park, L. Jeong, D. I. Yoo, and S. Hudson, Polymer, 45, 7151 (2004).CrossRefGoogle Scholar
  10. (10).
    S. Torres-Giner, M. J. Ocio, and J. M. Lagaron, Carbohydr. Polym., 77, 261 (2009).CrossRefGoogle Scholar
  11. (11).
    Y.-T. Jia, J. Gong, X.-H. Gu, H.-Y. Kim, J. Dong, and X.-Y. Shen, Carbohydr. Polym., 67, 403 (2007).CrossRefGoogle Scholar
  12. (12).
    J. An, H. Zhang, J. Zhang, Y. Zhao, and X. Yuan, Colloid Polym. Sci., 287, 1425 (2009).CrossRefGoogle Scholar
  13. (13).
    S.-L. Yang, Z.-H. Wu, W. Yang, and M.-B. Yang, Polym. Test., 27, 957 (2008).CrossRefGoogle Scholar
  14. (14).
    N. Suyatma, A. Copinet, L. Tighzert, and V. Coma, J. Polym. Environ., 12, 1 (2004).CrossRefGoogle Scholar
  15. (15).
    H. Tsuji, A. Mizuno, and Y. Ikada, J. Appl. Polym. Sci., 77, 1452 (2000).CrossRefGoogle Scholar
  16. (16).
    X. Zhang, H. Hua, X. Shen, and Q. Yang, Polymer, 48, 1005 (2007).CrossRefGoogle Scholar
  17. (17).
    F. Sébastien, G. Stéphane, A. Copinet, and V. Coma, Carbohydr. Polym., 65, 185 (2006).CrossRefGoogle Scholar
  18. (18).
    M. Peesan, P. Supaphol, and R. Rujiravanit, Carbohydr. Polym., 60, 343 (2005).CrossRefGoogle Scholar
  19. (19).
    X. Zong, K. Kim, D. Fang, S. Ran, B. S. Hsiao, and B. Chu, Polymer, 43, 4403 (2002).CrossRefGoogle Scholar
  20. (20).
    E. Kim, S. Kim, and C. Lee, Macromol. Res., 18, 215 (2010).CrossRefGoogle Scholar
  21. (21).
    K. H. Hong, J. L. Park, I. H. Sul, J. H. Youk, and T. J. Kang, J. Polym. Sci., 44, 2468 (2006).Google Scholar
  22. (22).
    W. P. Ye, F. S. Du, W. H. Jin, J. Y. Yang, and Y. Xu, React. Funct. Polym., 32, 161 (1997).CrossRefGoogle Scholar
  23. (23).
    P. van de Witte, P. J. Dijkstra, J. W. A. van den Berg, and J. Feijen, Polym. Phys., 34, 2553 (1996).CrossRefGoogle Scholar
  24. (24).
    L. Fang, R. Qi, L. Liu, G. Juan, and S. Huang, Int. J. Polym. Sci., 2009, 7 (2009).Google Scholar
  25. (25).
    E. J. Mark, Polymer Data Handbook, Oxford University Press, New York, 1998.Google Scholar
  26. (26).
    Z. Li, X. P. Zhuang, X. F. Liu, Y. L. Guan, and K. D. Yao, Polymer, 43, 1541 (2002).CrossRefGoogle Scholar
  27. (27).
    H. V. Tran, L. D. Tran, C. T. Ba, H. D. Vu, T. N. Nguyen, D. G. Pham, and P. X. Nguyen, Colloids Surf. A: Physicochem. Eng. Asp., 360, 32 (2010).CrossRefGoogle Scholar
  28. (28).
    U. S. Sajeev, K. A. Anand, D. Menon, and S. Nair, Bull. Mater. Sci., 31, 343 (2008).Google Scholar
  29. (29).
    K. Sakurai, T. Maegawa, and T. Takahashi, Polymer, 41, 7051 (2000).CrossRefGoogle Scholar
  30. (30).
    X. Shuai, Y. He, N. Asakawa, and Y. Inoue, J. Appl. Polym. Sci., 81, 762 (2001).CrossRefGoogle Scholar
  31. (31).
    N. E. Suyatma, A. Copinet, L. Tighzert, and V. Coma, J. Polym. Environ., 12, 1 (2004).CrossRefGoogle Scholar
  32. (32).
    B. Son, B. Y. Yeom, S. H. Song, C. S. Lee, and T. S. Hwang, J. Appl. Polym. Sci., 111, 2892 (2009).CrossRefGoogle Scholar

Copyright information

© The Polymer Society of Korea and Springer Netherlands 2012

Authors and Affiliations

  • Hang Thi Au
    • 1
  • Lan Ngoc Pham
    • 2
  • Thu Ha Thi Vu
    • 3
  • Jun Seo Park
    • 1
    Email author
  1. 1.Division of Chemical EngineeringHankyong National UniversityGyeonggiKorea
  2. 2.Faculty of ChemistryHanoi University of ScienceHanoiVietnam
  3. 3.Vietnam Institute of Industrial ChemistryHanoiVietnam

Personalised recommendations