Macromolecular Research

, Volume 20, Issue 1, pp 93–100 | Cite as

Characterization and hepatocytes adhesion of galactosylated poly(D,L-lactic-co-glycolic acid) surface

  • Lee Choi
  • Soon Jong Kwak
  • Su Jung You
  • Heung Jae ChunEmail author
  • Hong Lim Kim
  • Young Bock Shim
  • Moon Suk Kim
  • Ki Dong Park


The present study demonstrated that covalently galactosylated poly(D,L-lactic-co-glycolic acid) (PLGA) surface encourages hepatocyte adhesion and growth to form a dense cell network. Galactosylation of the PLGA surface was accomplished by grafting allylamine (AA) using inductively coupled plasma-assisted chemical vapor deposition (ICP-CVD) and conjugating lactobionic acid (LA) with AA via 1-ethyl-3-(3-dimethylaminopropyl) carbodiimide and N-hydroxysuccinimide (EDC/NHS) activation. The modified surface was characterized by Fourier transform infrared spectroscopy in the attenuated total reflectance, electron spectroscopy of chemical analysis, atomic force microscopy, and contact angle measurement. For evaluation of cell affinity in vitro, primary rat hepatocytes were prepared and seeded onto the modified PLGA surfaces. The galactosylated PLGA surface showed more pronounced hepatocyte adhesion and growth compared to those on the control PLGA surface. The hepatocytes seeded on galactosylated substrates exhibited a radial migration with filopodial growth to form multicellular aggregates, whereas those on control PLGA showed slowly adhered rounded shapes. Moreover, galactosylation increased metabolic hepatocyte activities such as albumin secretion and urea synthesis. Open image in new window


poly(D,L-lactic-co-glycolic acid) (PLGA) allylamine inductively coupled plasma-assisted chemical vapor deposition (ICP-CVD) galactose ligand hepatocyte multicellular aggregates 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. (1).
    T. E. Starzl, A. J. Demetris, and T. D. Van, N. Engl. J. Med., 321, 1014 (1989).CrossRefGoogle Scholar
  2. (2).
    W. Meng, K. H. Jung, I. K. Kang, O. H. Kwon, and T. Akaike, Macromolecules, 13, 257 (2005).Google Scholar
  3. (3).
    K. S. Yang, X. Guo, W. Meng, J. Y. Hyun, I. K. Kang, and Y. I. Kim, Macromolecules, 11, 488 (2003).Google Scholar
  4. (4).
    Y. C. Huang, Y. Y. Huang, C. C. Huang, and H. C. Liu, J. Biomed. Mater. Res. Part B: Appl. Biomater., 74, 659 (2005).CrossRefGoogle Scholar
  5. (5).
    H. R. Lin, C. J. Kuo, C. Y. Yang, S. Y. Shaw, and Y. J. Wu, J. Biomed. Mater. Res., 63, 271 (2002).CrossRefGoogle Scholar
  6. (6).
    S. H. Oh, S. G. Kang, E. S. Kim, S. H. Cho, and J. H. Lee, Biomaterials, 24, 4011 (2003).CrossRefGoogle Scholar
  7. (7).
    H. N. Park, J. B. Lee, and I. K. Kwon, Int. J. Tissue Regen., 1, 10 (2010).Google Scholar
  8. (8).
    E. S. You, H. S. Jang, W. S. Ahn, M. I. Kang, M. G. Jun, Y. C. Kim, and H. J. Chun, J. Ind. Eng. Chem., 13, 219 (2007).Google Scholar
  9. (9).
    K. A. Woodrow, M. J. Wood, J. K. Saucier-Sawyer, C. Solbrig, and W. M. Saltzma, Tissue Eng. Part A, 15, 1169 (2009).CrossRefGoogle Scholar
  10. (10).
    L. Dong, S. Gao, H. Diao, J. Chen, and J. Zhang, J. Biomed. Mater. Res. A, 84, 777 (2008).Google Scholar
  11. (11).
    T. Seested, H. M. Nielsen, E. I. Christensen, and R. S. Appa, Thromb. Haemost., 104, 1166 (2010).CrossRefGoogle Scholar
  12. (12).
    Y. J. Jung, K. H. Lee, C. W. Park, T. S. Suh, C. M. Hong, S. H. Hong, W. S. Ahn, and H. J. Chun, J. Ind. Eng. Chem., 11, 165 (2005).Google Scholar
  13. (13).
    D. K. Owens and R. C. Wendt, J. Appl. Polym. Sci., 13, 1711 (1969).CrossRefGoogle Scholar
  14. (14).
    Y. Zhu, M. B. Chan-Park, and K. S. Chian, J. Biomed. Mater. Res. Part B: Appl. Biomater., 75, 193 (2005).CrossRefGoogle Scholar
  15. (15).
    R. Rajaraman, D. E. Rounds, S. P. Yen, and A. Rembaum, Exp. Cell Res., 88, 327 (1974).CrossRefGoogle Scholar
  16. (16).
    C. Yin, L. Ying, P. C. Zhang, R. X. Zhuo, E. T. Kang, K. W. Leong, and H. Q. Mao, J. Biomed. Mater. Res. A, 15, 1093 (2003).CrossRefGoogle Scholar
  17. (17).
    J. J. Yoon, Y. S. Nam, J. H. Kim, and T. G. Park, Biotechnol. Bioeng., 78, 1 (2002).CrossRefGoogle Scholar
  18. (18).
    T. Hoshiba, M. Wakejima, C. S. Cho, G. Shiota, and T. Akaike, J. Biomed. Mater. Res. A, 85, 228 (2008).Google Scholar
  19. (19).
    J. H. Lee, S. J. Park, H. J. Chun, and C. H. Kim, Int. J. Tissue Regen., 1, 1 (2010).Google Scholar
  20. (20).
    R. Takei, D. Suzuki, T. Hoshiba, M. Magaoka, S. J. Seo, C. S. Cho, and T. Akaike, Biotechnol. Lett., 27, 1149 (2005).CrossRefGoogle Scholar
  21. (21).
    A. Haque, B. Hexig, Q. Meng, S. Hossain, M. Naqaoka, and T. Akaike, Biomaterials, 32, 2032 (2011).CrossRefGoogle Scholar
  22. (22).
    J. Fan, Y. Shang, Y. Yuan, and J. Yang, J. Mater. Sci. Mater. Med., 21, 319 (2010).CrossRefGoogle Scholar
  23. (23).
    Y. Gotoh, Y. Ishizuka, T. Matsuura, and S. Niimi, Biomacromolecules, 12, 1532 (2011).CrossRefGoogle Scholar

Copyright information

© The Polymer Society of Korea and Springer Netherlands 2012

Authors and Affiliations

  • Lee Choi
    • 1
    • 2
  • Soon Jong Kwak
    • 4
  • Su Jung You
    • 2
  • Heung Jae Chun
    • 1
    • 2
    • 3
    Email author
  • Hong Lim Kim
    • 3
  • Young Bock Shim
    • 5
  • Moon Suk Kim
    • 6
  • Ki Dong Park
    • 6
  1. 1.Department of Biomedical SciencesCatholic UniversitySeoulKorea
  2. 2.Institute of Cell & Tissue EngineeringCatholic UniversitySeoulKorea
  3. 3.Integrative Research Support Center, College of MedicineCatholic UniversitySeoulKorea
  4. 4.Polymer Hybrid Research CenterKorea Institute of Science and TechnologySeoulKorea
  5. 5.Research Institute of Biomedical EngineeringKorea Bone Bank Co. Ltd.SeoulKorea
  6. 6.Department of Molecular Science and TechnologyAjou UniversityGyeonggiKorea

Personalised recommendations