Advertisement

Macromolecular Research

, 19:1172 | Cite as

Structural characterization of a polysaccharide isolated from Lady Godiva pumpkins (Cucurbita pepo lady godiva)

  • Yi Song
  • Juan Li
  • Xiaosong Hu
  • Yuanying Ni
  • Quanhong Li
Articles

Abstract

In this study, a crude water-soluble heteropolysaccharide was isolated from Lady Godiva pumpkins (Cucurbita pepo Lady Godiva). After protein removal and purification, polysaccharides of the pumpkin fruit termed LGPP2-1 were subjected to structural identification. Gas chromatography-mass spectrometry (GC-MS) analysis indicated that LGPP2-1 mainly comprised L-fucose, D-galactose, D-glucose, and D-mannose. The glycosidic linkages were determined by methylation analysis and GC/MS. The results showed that LGPP2-1 consisted of 1,2,6-trisubstitued-galactopyranosyl, 1,6-disubstitued-galactopyranosyl, 1,4,6-trisubstitued-glucopyranosyl, 1,3-disubstituedglucopyranosyl, terminal-glucopyranosyl, and terminal-fucopyranosyl, with a molar proportion of 1:4:2:2:2:1. The Nuclear magnetic resonance (NMR) spectroscopy further confirmed that the configuration of L-fucose and D-galactose were in the α-form, while D-glucose was in the β-form. The molecular weight of LGPP2-1 measured using high-performance gel-permeation chromatography (HPGPC) was 1.01×104 Da.

Keywords

lady godiva pumpkins (Cucurbita pepo lady godivaheteropolysaccharide structural analysis 

References

  1. (1).
    A. Cáceres, S. Cárdenas, M. Gallego, and M. Valcárcel, Anal. Chim. Acta, 404, 121 (2005).CrossRefGoogle Scholar
  2. (2).
    S. Alban, A. Schauerte, and G. Franz, Carbohydr. Polym., 47, 267 (2002).CrossRefGoogle Scholar
  3. (3).
    I. A. Schepetkin and M. T. Quinn, Int. J. Immunopharmacol., 6, 317 (2006).CrossRefGoogle Scholar
  4. (4).
    F. Dourado, P. Madureira, V. Carvalho, R. Coelho, and M. A. Coimbra, Carbohydr. Res., 339, 2555 (2004).CrossRefGoogle Scholar
  5. (5).
    X. L. Li, A. G. Zhou, and Y. Han, Carbohydr. Polym., 66, 34 (2006).CrossRefGoogle Scholar
  6. (6).
    S. Rout and R. Banerjee, Bioresour. Technol., 98, 3159 (2007).CrossRefGoogle Scholar
  7. (7).
    S. Barbara and M. Murkovic, Food Chem., 84, 367 (2004).CrossRefGoogle Scholar
  8. (8).
    M. Murkovic, V. Piironen, A. Lampi, T. Kraushofer, and S. Gerhard, Food Chem., 84, 359 (2004).CrossRefGoogle Scholar
  9. (9).
    Q. H. Li, Z. Tian, and T. Y. Cai, Acta Nutr. Sinica, 25, 34 (2003).Google Scholar
  10. (10).
    Q. H. Li, C. L. Fu, Y. K. Rui, G. H. Hu, and T. Y. Cai, Plant Foods Hum. Nutr., 60, 13 (2005).CrossRefGoogle Scholar
  11. (11).
    M. Dubois, K. A. Gilles, J. K. Hamilton, P. A. Rebers, and F. Smith, Anal. Chem., 28, 350 (1956).CrossRefGoogle Scholar
  12. (12).
    B. Erbing, P. E. Jansson, G. Widmalm, and W. Nimmich, Carbohydr. Res., 273, 197 (1995).CrossRefGoogle Scholar
  13. (13).
    L. Guentas, P. Pheulpin, P. Michaud, A. Heyraud, C. Gey, B. Courtois, and J. Courtois, Carbohydr. Res., 332, 167 (2001).CrossRefGoogle Scholar
  14. (14).
    P. W. Needs and R. R. Sevendran, Carbohydr. Res., 245, 1 (1993).CrossRefGoogle Scholar
  15. (15).
    B. Yang, Y. M. Jiang, M. M. Zhao, F. Chen, R. Wang, Y. L. Chen, and D. D. Zhang, Food Chem., 115, 609 (2009).CrossRefGoogle Scholar
  16. (16).
    M. K. Lu, J. J. Cheng, C. Y. Lin, and C. C. Chang, Food Chem., 118, 349 (2010).CrossRefGoogle Scholar
  17. (17).
    M. Ka uráková, P. Capek, V. Sasinková, N. Wellner, and A. Ebringerová, Carbohydr. Polym., 43, 195 (2000).CrossRefGoogle Scholar
  18. (18).
    F. S. Park, in Application of Infrared spectroscopy in biochemistry, biology and medicine, Plenum Press, New York, 1971, pp 100–140.Google Scholar
  19. (19).
    W. Cao, X. Q. Li, L. Liu, M. C. Wang, H. T. Fan, C. Li, Z. Lv, X. Wang, and Q. Mei, Carbohydr. Res., 341, 1870 (2006).CrossRefGoogle Scholar
  20. (20).
    S. A. Barker, E. J. Bourne, M. Stacey, and D. H. Whiffen, J. Chem. Soc., 171 (1954).Google Scholar
  21. (21).
    J. M. Fan, J. S. Zhang, and Q. J. Tang, Carbohydr. Res., 341, 1130 (2006).CrossRefGoogle Scholar
  22. (22).
    Y. Yang, J. Song, Y. F. Liu, Q. J. Tang, Z. G. Zhao, and W. S. Zhao, Carbohydr. Res., 342, 1063 (2007).CrossRefGoogle Scholar
  23. (23).
    Q. Ge, A. Q. Zhang, and P. L. Sun, Food Chem., 114, 391 (2009).CrossRefGoogle Scholar
  24. (24).
    I. Chakraborty, S. Mondal, M. Prananik, D. Rout, and S. S. Islam, Carbohydr. Res., 339, 2249 (2004).CrossRefGoogle Scholar
  25. (25).
    D. Rout, S. Mondal, I. Chakraborty, M. Prananik, and S. S. Islam, Carbohydr. Res., 340, 2533 (2005).CrossRefGoogle Scholar
  26. (26).
    S. Mondal, I. Chalaraborty, and D. Rout, Carbohydr. Res., 341, 878 (2006).CrossRefGoogle Scholar
  27. (27).
    D. Dominaika, V. T. Philip, and P. A. Nikolay, Carbohydr. Res., 337, 1535 (2002).CrossRefGoogle Scholar

Copyright information

© The Polymer Society of Korea and Springer Netherlands 2011

Authors and Affiliations

  • Yi Song
    • 1
    • 2
  • Juan Li
    • 1
    • 2
  • Xiaosong Hu
    • 1
    • 2
  • Yuanying Ni
    • 1
    • 2
  • Quanhong Li
    • 1
    • 2
  1. 1.College of Food Science and Nutritional EngineeringChina Agricultural UniversityBeijingChina
  2. 2.Key Laboratory of Fruit and Vegetable Processing, Ministry of Agriculture, China Engineering Research Center for Fruit and Vegetable ProcessingMinistry of EducationBeijingChina

Personalised recommendations