Macromolecular Research

, Volume 19, Issue 8, pp 778–788 | Cite as

Molecular characterization of polypropylene heterophasic copolymers by fractionation techniques

  • Rafael A. GarcíaEmail author
  • Baudilio Coto
  • María-Teresa Expósito
  • Inmaculada Suarez
  • Almudena Fernández-Fernández
  • Susana Caveda


Molecular microstructure, thermal properties and morphology of three polypropylene heterophasic copolymers (PHC) with similar comonomer content were characterized by gel permeation chromatography (GPC), differential scanning calorimetry (DSC), analytical and preparative temperature rising elution fractionation (TREF), scanning electron microscopy (SEM), and carbon nuclear magnetic resonance spectroscopy (13C NMR). These results indicate that there are no differences in solution and thermal properties between unfractionated copolymers. Nevertheless, a physical fractionation by crystallization of these copolymers was developed to carry out a detailed study. Four fractions at different temperatures were collected. The results showed that the PHC’s copolymers are composed by polypropylene, ethylene-propylene rubber (EPR) and, crystallisable sequences with different propylene and/or ethylene comonomers distribution. Despite the similar thermo-chemical properties shown by the raw PHC’s copolymers, the characterization of fractions displayed significant differences between them. These results suggest that the fractionation by crystallization allows the different components in which the PHC’s copolymers are based to be distinguished clearly, and obtain a more comprehensive sense of the molecular structure characterization.


polypropylene heterophasic copolymers molecular microstructure multi-phase structure polymer fractionation 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. (1).
    W. Kaminsky, M. Predel, and A. Sadiki, Polym. Degrad. Stab., 85, 1045 (2004).CrossRefGoogle Scholar
  2. (2).
    APME, The compelling facts about plastics: an analysis of plastics production, demand and recovery for 2005 in Europe, Plastics Europe, Brussels, 2007.Google Scholar
  3. (3).
    APME, Annual Report 2007, Safeguarding the planet by reaching out, Plastics Europe, Brussels, 2007.Google Scholar
  4. (4).
    M. J. Caballero, I. Suarez, B. Coto, R. van Grieken, and B. Monrabal, Macromol. Symp., 57, 122 (2007).CrossRefGoogle Scholar
  5. (5).
    R. G. Alamo, D. L. Vander Hart, M. R. Nyden, and L. Mandelkern, Macromolecules, 33, 6094 (2000).CrossRefGoogle Scholar
  6. (6).
    B. C. Poon, P. Dias, P. Ansems, S. P. Chum, A. Hiltner, and E. Baer, J. Appl. Polym. Sci., 104, 489 (2007).CrossRefGoogle Scholar
  7. (7).
    J. C. W. Chien and D. He, J. Appl. Polym. Sci. Part A: Polym. Chem., 29, 1585 (1991).CrossRefGoogle Scholar
  8. (8).
    P. Doshev, G. Lohse, S. Henning, and M. Krumova, J. Appl. Polym. Sci., 101, 2825 (2006).CrossRefGoogle Scholar
  9. (9).
    L. Rongbo and Z. Xiuquin, Polymer, 50, 5124 (2009).CrossRefGoogle Scholar
  10. (10).
    R. A. Meyers, Handbook of Petrochemicals Production Processes, McGraw-Hill, New York, 2005.Google Scholar
  11. (11).
    P. Galli and G. Vecellio, Prog. Polym. Sci., 26, 1287 (2001).CrossRefGoogle Scholar
  12. (12).
    I. Urdampilleta, A. Gonzalez, J. Iruin, J. de la Cal, and J. M. Asua, Ind. Eng. Chem. Res., 45, 4178 (2006).CrossRefGoogle Scholar
  13. (13).
    Q. Dong, X. Wang, Z. Fu, J. Xu, and Z. Fan, Polymer, 48, 5905 (2007).CrossRefGoogle Scholar
  14. (14).
    R. Li, X. Zhang, Y. Zhao, X. Hu, X. Zhao, and D. Wang, Polymer, 50, 5124 (2009).CrossRefGoogle Scholar
  15. (15).
    F. M. Mirabella, Polymer, 34, 1729 (1993).CrossRefGoogle Scholar
  16. (16).
    R. Zagur, G. Goizueta, and N. Capiati, Polym. Eng. Sci., 40, 1921 (2000).CrossRefGoogle Scholar
  17. (17).
    T. Kamfjord and A. Stori, Polymer, 42, 2767 (2001).CrossRefGoogle Scholar
  18. (18).
    M. Pires, R. Mauler, and A. Liberman, J. Appl. Polym. Sci., 92, 2155 (2004).CrossRefGoogle Scholar
  19. (19).
    V. Virkkunen, P. Laari, and P. Pitkänen, Polymer, 45, 3091 (2004).CrossRefGoogle Scholar
  20. (20).
    P. Viville, D. Daoust, A. M. Jonas, B. Nysten, R. Legras, and M. Dupire, Polymer, 42, 1933 (2001).CrossRefGoogle Scholar
  21. (21).
    P. Lodefier, A. M. Jonas, and R. Legras, Macromolecules, 32, 7135 (1999).CrossRefGoogle Scholar
  22. (22).
    J. C. Randall, J. Macromol. Sci., Rev. Macromol. Chem. Phys., 29, 201 (1989).Google Scholar
  23. (23).
    M. Kakugo, Macromolecules, 15, 1150 (1982).CrossRefGoogle Scholar
  24. (24).
    J. Isasi, L. Mandelkern, M. J. Galante, and R. G. Alamo, J. Polym. Sci. Part B: Polym. Phys., 37, 323 (1999).CrossRefGoogle Scholar
  25. (25).
    D. H. Zhang, J. Sheng, Z. M. Xie, and J. S. Li, Ind. Eng. Chem. Res., 19, 141 (2002).Google Scholar
  26. (26).
    J. B. P. Soares and A. E. Hamielec, Polymer, 36, 1639 (1995).CrossRefGoogle Scholar
  27. (27).
    J. Ito, K. Mitani, and Y. Mizutani, J. Appl. Polym. Sci., 46, 1235 (1992).CrossRefGoogle Scholar
  28. (28).
    V. A. Voskresenskii, E. M. Orlova, E. I. Abramova, and N. S. Prokhorova, Russ. Chem. Rev., 40, 78 (1971).CrossRefGoogle Scholar
  29. (29).
    M. T. Expósito, Synthesis and Characterization of Ethylene/Styrene Copolymers Using Single Site Catalyst Systems, Ph.D. Thesis, Universidad Complutense de Madrid, 2006.Google Scholar
  30. (30).
    M. Matos, J. Sanchez, and M. C. Jiménez, Rev. Latinoam. Metal. Mater., 25, 31 (2005).Google Scholar
  31. (31).
    D. Heikens, N. Hoen, and W. Barentsen, J. Polym. Sci., 62, 309 (1978).Google Scholar
  32. (32).
    J. B. P. Soares and A. E. Hamielec, Polymer, 37, 4607 (1996).CrossRefGoogle Scholar
  33. (33).
    J. Xu, Eur. Polym. J., 34, 431 (1998).CrossRefGoogle Scholar
  34. (34).
    M. Kioka, H. Makio, A. Mizuno, and N. Kashiwa, Polymer, 35, 580 (1994).CrossRefGoogle Scholar
  35. (35).
    Z. Horvath, I. E. Sajo, K. Stoll, A. Menyhard, and J. Varga, Express Polym. Lett., 4, 101 (2010).CrossRefGoogle Scholar

Copyright information

© The Polymer Society of Korea and Springer Netherlands 2011

Authors and Affiliations

  • Rafael A. García
    • 1
    Email author
  • Baudilio Coto
    • 2
  • María-Teresa Expósito
    • 1
  • Inmaculada Suarez
    • 2
  • Almudena Fernández-Fernández
    • 2
  • Susana Caveda
    • 3
  1. 1.Chemical and Environmental Technology Department, ESCETUniversidad Rey Juan CarlosMóstolesSpain
  2. 2.Chemical and Energy Technology Department, ESCETUniversidad Rey Juan CarlosMóstolesSpain
  3. 3.Repsol Centro TecnológicoMóstolesSpain

Personalised recommendations