Macromolecular Research

, Volume 19, Issue 7, pp 668–672 | Cite as

Versatile phospholipid-like surfactants for water dispersible nanoparticles

  • Minjeong Kim
  • Joongpil Park
  • Mi Jin Yoon
  • Kyeong Sook Choi
  • Sang-Wook Kim


Versatile phospholipid-like surfactants, composed of phosphate center, hydrophobic alkyl group, and hydrophilic poly(ethylene glycol) group, were synthesized for water-dispersible nanoparticles. They can disperse a range of nanoparticles of semiconductors, metals, and metal oxides in aqueous solutions by simply mixing the hydrophobic nanoparticles and surfactant at room temperature. The precursors and synthetic process are economical and useful for large-scale production. The cytotoxicity was examined on T98G cancer cells, which showed no appreciable toxicity in the cells.


surfactant nanoparticles water-soluble iron oxide quantum dot 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. (1).
    Y. Li, X. Hong, D. M. Collard, and M. A. Elsayed, Org. Lett., 2, 2385 (2000).CrossRefGoogle Scholar
  2. (2).
    A.-H. Lu, E. L. Salabas, and F. Schüth, Angew. Chem. Int. Ed., 46, 1222 (2007).CrossRefGoogle Scholar
  3. (3).
    R. Weissleder, K. Kelly, E. Y. Sun, T. Shtatland, and L. Josephson, Nat. Biotechnol., 23, 1418 (2005).CrossRefGoogle Scholar
  4. (4).
    J.-M. Nam, C. S. Thaxton, and C. A. Mirkin, Science, 301, 1884 (2003).CrossRefGoogle Scholar
  5. (5).
    A. K. Gupta and M. Gupta, Biomaterials, 26, 3995 (2005).CrossRefGoogle Scholar
  6. (6).
    G. M. Whitesides, Nat. Biotechnol., 21, 1161 (2003).CrossRefGoogle Scholar
  7. (7).
    X. Gao and S. Nie, Trends Biotechnol., 21, 371 (2003).CrossRefGoogle Scholar
  8. (8).
    D. B. Zorov, E. Kobrinsky, M. Juhaszova, and S. Sollott, J. Circ. Res., 95, 239 (2004).CrossRefGoogle Scholar
  9. (9).
    S. Santra, H. Yang, P. H. Holloway, J. T. Stanley, and R. A. Mericle, J. Am. Chem. Soc., 127, 1656 (2005).CrossRefGoogle Scholar
  10. (10).
    M. F. Kircher, R. Weissleder, and L. Josephson, Bioconjug. Chem., 15, 242 (2004).CrossRefGoogle Scholar
  11. (11).
    J.-H. Lee, T.-M. Huh, Y.-W. Jun, J.-W. Seo, J.-T. Jang, H.-T. Song, S. Kim, E.-J. Cho, H.-G. Yoon, J.-S. Suh, and J. Cheon, Nat. Med.(N.Y.), 13, 95 (2007).Google Scholar
  12. (12).
    J. W. M. Bulte and D. L. Kraitchman, NMR Biomed., 17, 484 (2004).CrossRefGoogle Scholar
  13. (13).
    S. Momet, S. Vasseur, F. Grasset, P. Verveka, G. Goglio, A. Demourgues, J. Portier, E. Pollert, and E. Duguet, Prog. Solid State Chem., 34, 237 (2006).CrossRefGoogle Scholar
  14. (14).
    L. Josephson, C. H. Tung, A. Moore, and R. Weissleder, Bioconjug. Chem., 10, 186 (1999).CrossRefGoogle Scholar
  15. (15).
    J. W. M. Bulte, T. Douglas, B. Witwer, S.-C. Zhang, E. Strable, B. K. Lewis, B. K. H. Zywicke, B. Miller, P. Van Gelderen, B. M. Moskowitz, I. D. Duncan, and J. A. Frank, Nat. Biotechnol., 19, 1141 (2001).CrossRefGoogle Scholar
  16. (16).
    H. W. Kang, L. Josephson, A. Petrovsky, R. Weissleder, and A. Bogdanov, Jr., Bioconjug. Chem., 13, 122 (2002).CrossRefGoogle Scholar
  17. (17).
    Y.-W. Jun, Y.-M. Huh, J.-S. Choi, J.-H. Lee, H.-T. Song, S. Kim, S. Yoon, K.-S. Kim, J.-S. Shin, J.-S. Suh, and J. Cheon, J. Am. Chem. Soc., 127, 5732 (2005).CrossRefGoogle Scholar
  18. (18).
    Y.-M. Huh, Y.-W. Jun, H.-T. Song, S. Kim, J.-S. Choi, J.-H. Lee, S. Yoon, K.-S. Kim, J.-S. Shin, J.-S. Suh, and J. Cheon, J. Am. Chem. Soc., 127, 12387 (2005).CrossRefGoogle Scholar
  19. (19).
    D. Artemov, N. Mori, B. Okollie, and A. M. Bhujwalla, Magn. Reson. Med., 49, 403 (2003).CrossRefGoogle Scholar
  20. (20).
    M. M. Huber, A. B. Staubli, K. Kustedjo, M. H. B. Gray, J. Shih, S. E. Fraser, R. E. Jacobs, and T. J. Meade, Bioconjug. Chem., 9, 242 (1998).CrossRefGoogle Scholar
  21. (21).
    M. Modo, K. Mellodew, D. Cash, S. E. Fraser, T. J. Meade, J. Price, and S. C. R. Williams, Neuroimage, 21, 311 (2004).CrossRefGoogle Scholar
  22. (22).
    L. Josephson, M. F. Kircher, U. Mahmood, Y. Tang, and R. Weissleder, Bioconjug. Chem., 13, 554 (2002).CrossRefGoogle Scholar
  23. (23).
    Y. Wang, J. F. Wong, X. Teng, X. G. Lin, and H. Yang, Nano Lett., 3, 1555 (2003).CrossRefGoogle Scholar
  24. (24).
    T. Pellegrino, L. Manna, S. Kudera, T. Liedl, D. Koktysh, A. L. Rogach, S. Keller, J. Radler, G. Natile, and W. J. Parak, Nano Lett., 4, 703 (2004).CrossRefGoogle Scholar
  25. (25).
    D. A. Schultz, Curr. Opin. Biotech., 14, 13 (2003).CrossRefGoogle Scholar
  26. (26).
    N. R. Jana, L. Gearheart, and C. J. Murphy, Langmuir, 17, 6782 (2001).CrossRefGoogle Scholar
  27. (27).
    R. Narayanan and M. A. El-Sayed, J. Am. Chem. Soc., 125, 8340 (2003).CrossRefGoogle Scholar
  28. (28).
    T. Teranish and M. Miyake, Chem. Mater., 10, 594 (1998).CrossRefGoogle Scholar
  29. (29).
    B. V. Enustun and J. Turkevich, J. Am. Chem. Soc., 85, 3317 (1963).CrossRefGoogle Scholar
  30. (30).
    Y. S. Kang, S. Risbud, J. F. Rabolt, and P. Stroeve, Chem. Mater., 8, 2209 (1996).CrossRefGoogle Scholar
  31. (31).
    H. Hiramatsu and F. E. Osterloh, Chem. Mater., 16, 2509 (2004).CrossRefGoogle Scholar
  32. (32).
    J. Park, J. Joo, S. G. Kwon, Y. Jang, and T. Hyeon, Angew. Chem. Int. Ed., 46, 4630 (2007).CrossRefGoogle Scholar
  33. (33).
    T. Hyeon, S. S. Lee, J.-N. Park, Y.-H. Chung, and H. B. Na, J. Am. Chem. Soc., 123, 12798 (2001).CrossRefGoogle Scholar
  34. (34).
    S. Sun and H. Zeng, J. Am. Chem. Soc., 124, 8204 (2002).CrossRefGoogle Scholar
  35. (35).
    X. Teng and H. Yang, J. Mater. Chem., 14, 774 (2004).CrossRefGoogle Scholar
  36. (36).
    R. J. Anderson, S. L. Osborne, F. A. Meunier, and G. F. Painter, J. Org. Chem., 75, 3541 (2010).CrossRefGoogle Scholar
  37. (37).
    T. Calogeropoulou, P. Angelou, A. Detsi, I. Fragiadaki, and E. Scoulica, J. Med. Chem., 51, 897 (2008).CrossRefGoogle Scholar
  38. (38).
    I. Kim, H. Li, N. H. Shin, C.-S. Ha, H. Suh, and C. A. Batt, Chem. Mater., 21, 3782 (2009).CrossRefGoogle Scholar
  39. (39).
    R. Rosseto, C. M. Tcacenco, R. Ranganathan, and J. Hajdu, Tetrahedron Lett., 49, 3500 (2008).CrossRefGoogle Scholar
  40. (40).
    M. E. Jung, J. A. Berliner, L. Koroniak, B. G. Gugiu, and A. D. Watson, Org. Lett., 10, 4207 (2008).CrossRefGoogle Scholar
  41. (41).
    J. M. Bruchez, M. Moronne, P. Gin, S. Weiss, and A. P. Alivisatos, Science, 281, 2013 (1998).CrossRefGoogle Scholar
  42. (42).
    W. C. W. Chan and S. Nie, Science, 281, 2016 (1998).CrossRefGoogle Scholar
  43. (43).
    H. Mattoussi, J. M. Mauro, E. R. Goldman, G. P. Anderson, V. C. Sundar, F. V. Mikulec, and M. G. Bawendi, J. Am. Chem. Soc., 122, 12142 (2000).CrossRefGoogle Scholar
  44. (44).
    Y. A. Wang, J. J. Li, J. J. H. Y. Chen, and X. Peng, J. Am. Chem. Soc., 124, 2293 (2002).CrossRefGoogle Scholar
  45. (45).
    H. B. Na, I. S. Lee, H. Seo, Y. I. Park, J. H. Lee, S.-W. Kim, and T. Hyeon, Chem. Commun., 5167 (2007).Google Scholar
  46. (46).
    S.-H. Cha, J.-U. Kim, and J.-C. Lee, Macromol. Res., 16, 711 (2008).Google Scholar
  47. (47).
    Y.-K. Lee, S. M. Hong, J. S. Kim, J. H. Im, H. S. Min, E. Subramanyam, K. M. Huh, and S. W. Park, Macromol. Res., 15, 330 (2007).Google Scholar
  48. (48).
    N. R. Jana, Y. Chen, and X. Peng, Chem. Mater., 16, 3931 (2004).CrossRefGoogle Scholar
  49. (49).
    J. Park, K. An, Y. Hwang, J.-G. Park, H.-J. Noh, J.-Y. Kim, J.-H. Park, N.-M. Hwang, and T. Hyeon, Nat. Mater., 3, 891 (2004).CrossRefGoogle Scholar
  50. (50).
    F. X. Redl, C. T. Black, G. C. Papaefthymiou, R. L. Sandstorm, M. Yin, H. Zeng, C. B. Murray, and S. P. O’Brien, J. Am. Chem. Soc., 126, 14583 (2004).CrossRefGoogle Scholar

Copyright information

© The Polymer Society of Korea and Springer Netherlands 2011

Authors and Affiliations

  • Minjeong Kim
    • 1
  • Joongpil Park
    • 1
  • Mi Jin Yoon
    • 2
  • Kyeong Sook Choi
    • 2
  • Sang-Wook Kim
    • 1
  1. 1.Department of Molecular Science and TechnologyAjou UniversityGyeonggiKorea
  2. 2.Department of Molecular Science and Technology, Institute for Medical SciencesAjou University School of MedicineGyeonggiKorea

Personalised recommendations