Advertisement

Macromolecular Research

, Volume 19, Issue 7, pp 739–748 | Cite as

A pH-sensitive composite hydrogel based on sodium alginate and medical stone: Synthesis, swelling, and heavy metal ions adsorption properties

  • Tianpeng Gao
  • Wenbo Wang
  • Aiqin Wang
Articles

Abstract

New pH-sensitive composite hydrogels were synthesized by free-radical graft copolymerization among sodium alginate (NaAlg), sodium acrylate (NaA), and medical stone (MS). Fourier transform infrared spectroscopy (FTIR), field emission scanning electron microscopy (FESEM), tronsmission electron microscopy (TEM), and thermogravimetric analysis (TGA) analyses confirmed that NaA was grafted onto the NaAlg chains and MS participate in polymerization by its active silanol groups, and the surface morphologies and thermal stability was clearly improved after incorporating MS. The swelling capacity and rate of the hydrogel were clearly enhanced by introducing MS, and the intriguing deswelling in gelatin solution and “overflowing” behaviors in dimethyl sulfoxide (DMSO) and glycerin solutions were observed. In addition, the composite hydrogels exhibited excellent adsorption capacity on heavy metal ions, which enhanced the adsorption of Ni2+, Cu2+, Zn2+ and Cd2+ ions by 10.4, 8.0, 23.0, and 14.3 fold compared to active carbon (AC), and by 17.3, 16.0, 38.3 and 23.8 fold compared to MS, respectively. The biopolymer-based composite hydrogel can be used as a potential water-saving material and candidate of AC for heavy metal removal.

Keywords

composite hydrogel sodium alginate medical stone swelling adsorption pH-sensitivity 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. (1).
    H. Omidian and K. Park, in Introduction to Hydrogels. Biomedical Applications of Hydrogels Handbook, 2010, pp 1–16, DOI: 10.1007/978-1-4419-5919-5_1.Google Scholar
  2. (2).
    M. R. Guilherme, A. V. Reis, A. T. Paulino, T. A. Moia, L. H. C. Mattoso, and E. B. Tambourgi, J. Appl. Polym. Sci., 117, 3146 (2010).Google Scholar
  3. (3).
    M. Teodorescu, A. Lungu, P. O. Stanescu, and C. Neamtu, Ind. Eng. Chem. Res., 48, 6527 (2009).CrossRefGoogle Scholar
  4. (4).
    A. Das, V. K. Kothari, S. Makhija, and K. Avyaya, J. Appl. Polym. Sci., 107, 1466 (2008).CrossRefGoogle Scholar
  5. (5).
    K. S. V. Krishna Rao and C. S. Ha, Polym. Bull., 62, 167 (2009).CrossRefGoogle Scholar
  6. (6).
    J. M. Carvalho, M. A. Coimbra, and F. M. Gama, Carbohydr. Polym., 75, 322 (2009).CrossRefGoogle Scholar
  7. (7).
    M. Mahkam, N. Poorgholy, and L. Vakhshouri, Macromol. Res., 17, 709 (2009).Google Scholar
  8. (8).
    G. Güçlü, E. Al, S. Emik, T. B. yim, S. Özgümü, and M. Özyürek, Polym. Bull., 65, 333 (2010).CrossRefGoogle Scholar
  9. (9).
    M. R. Guilherme, A. V. Reis, A. T. Paulino, A. R. Fajardo, E. C. Muniz, and E. B. Tambourgi, J. Appl. Polym. Sci., 105, 2903 (2007).CrossRefGoogle Scholar
  10. (10).
    M. Dalaran, S. Emik, G. Güçlü, T. B. yim, and S. Özgümü, Polym. Bull., 63, 159 (2009).CrossRefGoogle Scholar
  11. (11).
    H. Ka göz and A. Durmus, Polym. Adv. Technol., 19, 838 (2008).CrossRefGoogle Scholar
  12. (12).
    W. Kangwansupamonkon, W. Jitbunpot, and S. Kiatkamjornwong, Polym. Degrad. Stab., 95, 1894 (2010).CrossRefGoogle Scholar
  13. (13).
    J. K. Kim and Y. K. Han, Macromol. Res., 16, 734 (2008).Google Scholar
  14. (14).
    K. Y. Lee and D. J. Mooney, Chem. Rev., 101, 1869 (2001).CrossRefGoogle Scholar
  15. (15).
    K. Lange, B. E. Rapp, and M. Rapp, Anal. Bioanal. Chem., 391, 1509 (2008).CrossRefGoogle Scholar
  16. (16).
    I. Šimkovic, Carbohydr. Polym., 74, 759 (2008).CrossRefGoogle Scholar
  17. (17).
    S. S. Ray and M. Bousmina, Prog. Mater. Sci., 50, 962 (2005).CrossRefGoogle Scholar
  18. (18).
    E. Al, G. Güçlü, T. B. yim, S. Emik, and S. Özgümü, J. Appl. Polym. Sci., 109, 16 (2008).CrossRefGoogle Scholar
  19. (19).
    Q. Z. Dai and J. F. Kadla, J. Appl. Polym. Sci., 114, 1664 (2009).CrossRefGoogle Scholar
  20. (20).
    W. B. Wang, J. P. Zhang, and A. Q. Wang, Appl. Clay Sci., 46, 21 (2009).CrossRefGoogle Scholar
  21. (21).
    A. Pourjavadi, A. M. Harzandi, and H. Hosseinzadeh, Macromol. Res., 13, 483 (2005).Google Scholar
  22. (22).
    N. G. Kandile and A. S. Nasr, Carbohydr. Polym., 78, 753 (2009).CrossRefGoogle Scholar
  23. (23).
    M. R. Guilherme, A. V. Reis, S. H. Takahashi, A. F. Rubira, J. P. A. Feitosa, and E. C. Muniz, Carbohydr. Polym., 61, 464 (2005).CrossRefGoogle Scholar
  24. (24).
    M. H. Huang and M. C. Yang, Polym. Adv. Technol., 21, 561 (2010).Google Scholar
  25. (25).
    M. R. Guilherme, T. A. Moia, A. V. Reis, A. T. Paulino, A. F. Rubira, L. H. C. Mattoso, E. C. Muniz, and E. B. Tambourgi, Biomacromol., 10, 190 (2009).CrossRefGoogle Scholar
  26. (26).
    R. Russo, M. Malinconico, and G. Santagata, Biomacromol., 8, 3193 (2007).CrossRefGoogle Scholar
  27. (27).
    A. Pourjavadi, M. S. Amini-Fazl, and H. Hosseinzadeh, Macromol. Res., 13, 45 (2005).Google Scholar
  28. (28).
    A. Pourjavadi, H. Ghasemzadeh, and R. Soleyman, J. Appl. Polym. Sci., 105, 2631 (2007).CrossRefGoogle Scholar
  29. (29).
    R. Meena, M. Chhatbar, K. Prasad, and A. K. Siddhanta, Polym. Int., 57, 329 (2008).CrossRefGoogle Scholar
  30. (30).
    J. Li, P. Y. Zhang, Y. Gao, X. G. Song, and J. H. Dong, Environ. Sci. Technol. (China), 31, 63 (2008).Google Scholar
  31. (31).
    A. Li, A. Q. Wang, and J. M. Chen, J. Appl. Polym. Sci., 92, 1596 (2004).CrossRefGoogle Scholar
  32. (32).
    J. H. Wu, J. M. Lin, G. Q. Li, and C. R. Wei, Polym. Int., 50, 1050 (2001).CrossRefGoogle Scholar
  33. (33).
    B. L. Yao, C. H. Ni, C. Xiong, C. P. Zhu, and B. Huang, Bioprocess Biosyst. Eng., 33, 457 (2010).CrossRefGoogle Scholar
  34. (34).
    Y. H. Huang, J. Lu, and C. B. Xiao, Polym. Degrad. Stab., 92, 1072 (2007).CrossRefGoogle Scholar
  35. (35).
    H. Schott, J. Macromol. Sci. B, 31, 1 (1992).CrossRefGoogle Scholar
  36. (36).
    M. Shibayama and T. Tanaka, Adv. Polym. Sci., 109, 1 (1993).Google Scholar
  37. (37).
    J. W. Chen and J. R. Shen, J. Appl. Polym. Sci., 75, 1331 (2000).CrossRefGoogle Scholar
  38. (38).
    Y. Liu, J. J. Xie, M. F. Zhu, and X. Y. Zhang, Macromol. Mater. Eng., 289, 1074 (2004).CrossRefGoogle Scholar
  39. (39).
    K. Kabiri, M. J. Zohuriaan-Mehr, H. Mirzadeh, and M. Kheirabadi, J. Polym. Res., 17, 203 (2010).CrossRefGoogle Scholar

Copyright information

© The Polymer Society of Korea and Springer Netherlands 2011

Authors and Affiliations

  1. 1.Center for Eco-material and Green Chemistry, Lanzhou Institute of Chemical PhysicsChinese Academy of SciencesLanzhouP.R. China
  2. 2.Graduate University of the Chinese Academy of SciencesBeijingP.R. China
  3. 3.School of Chemistry and Environmental ScienceLanzhou City UniversityLanzhouP.R. China

Personalised recommendations