Macromolecular Research

, Volume 19, Issue 7, pp 654–659

Synthesis and characterization of polymer electrolytes containing phenothiazine-based click polymers for dye-sensitized solar cell applications

  • Myungkwan Song
  • Jin Su Park
  • Yeol Ho Kim
  • Md. Anwarul Karim
  • Sung-Ho Jin
  • Ryang So Ree
  • Young Rae Cho
  • Yeong-Soon Gal
  • Jae Wok Lee
Articles

Abstract

A new series of phenothiazine-based polymeric electrolytes were developed to obtain a high power conversion efficiency (PCE) of dye-sensitized solar cells (DSSCs). Phenothiazine-based click polymers were synthesized using Cu(I)-catalyzed click reaction methods. The resulting polymers were soluble in common organic solvents and had a reasonable molecular weight. The thermal properties, emission spectra, and energy band gap of synthesized click polymers were also investigated. The polymer electrolytes were composed of iodide and triiodide redox species embedded in phenothiazine-based click polymers or polyacrylonitrile (PAN) as a polymer matrix. DSSCs were fabricated with a configuration of SnO2:F/TiO2/N719 dye/polymer electrolyte/Pt devices using these click polymers or PAN as an electrolyte components and compared photovoltaic performance. The maximum PCE of the phenothiazine-based click polymers as polymer electrolytes for DSSCs was obtained 5.30% (at 1 sun). These enhanced click polymers are expected to find applications as an electrolyte component in DSSCs in the future.

Keywords

polymer electrolyte click chemistry phenothiazine photovoltaic properties dye-sensitized solar cells 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. (1).
    B. O’Regan and M. Grätzel, Nature, 353, 737 (1991).CrossRefGoogle Scholar
  2. (2).
    M. Grätzel, J. Photochem. Photobiol. A, 164, 3 (2004).CrossRefGoogle Scholar
  3. (3).
    T. Asano, T. Kubo, and Y. Nishikitani, J. Photochem. Photobiol. A, 164, 111 (2004).CrossRefGoogle Scholar
  4. (4).
    T. Stergiopoulos, I. M. Arabatzis, G. Katsaros, and P. Falaras, Nano Lett., 2, 1259 (2002).CrossRefGoogle Scholar
  5. (5).
    H. Kusama and H. Arakawa, J. Photochem. Photobiol. A, 164, 103 (2004).CrossRefGoogle Scholar
  6. (6).
    H. C. Kolb, M. G. Finn, and K. B. Sharpless, Angew. Chem., Int. Ed., 40, 2004 (2001).CrossRefGoogle Scholar
  7. (7).
    V. V. Rostovtsev, L. G. Green, V. V. Fokin, and K. B. Sharpless, Angew. Chem., Int. Ed., 41, 2596 (2002).CrossRefGoogle Scholar
  8. (8).
    F. Lutz, J. H. G. Borner, and K. Weichenhan, Macromol. Rapid Commun., 26, 514 (2005).CrossRefGoogle Scholar
  9. (9).
    J. A. Opsteen and J. C. M. van Hest, Chem. Commun., 57 (2005).Google Scholar
  10. (10).
    B. S. Sumerlin, N. V. Tsarevsky, G. Louche, R. Y. Lee, and K. Matyjaszewski, Macromolecules, 38, 7540 (2005).CrossRefGoogle Scholar
  11. (11).
    B. Helms, J. L. Mynar, C. J. Hawker, and J. M. J. Frechet, J. Am. Chem. Soc., 126, 15020 (2004).CrossRefGoogle Scholar
  12. (12).
    B. Parrish, R. B. Breitenkamp, and T. Emrick, J. Am. Chem. Soc., 127, 7404 (2005).CrossRefGoogle Scholar
  13. (13).
    D. D. Diaz, S. Punna, P. Holzer, A. K. Mcpherson, K. B. Sharpless, V. V. Fokin, and M. G. Finn, J. Polym. Sci. Part A: Polym. Chem., 42, 4392 (2004).CrossRefGoogle Scholar
  14. (14).
    H. M. Li, F. O. Cheng, A. M. Duft, and A. Adronov, J. Am. Chem. Soc., 127, 14518 (2005).CrossRefGoogle Scholar
  15. (15).
    R. Zirbs, F. Kienberger, P. Hinterdorfer, and W. H. Binder, Langmuir, 21, 8414 (2005).CrossRefGoogle Scholar
  16. (16).
    W. H. Zhan, W. J. Wu, J. L. Hua, Y. H. Jing, F. S. Meng, and H. Tian, Tetrahedron Lett., 48, 2461 (2007).CrossRefGoogle Scholar
  17. (17).
    M. A. Karim, Y. R. Cho, J. S. Park, S. C. Kim, H. J. Kim, J. W. Lee, Y. S. Gal, and S. H. Jin, Chem. Commun., 1929 (2008).Google Scholar
  18. (18).
    M. A. Karim, Y. R. Cho, J. S. Park, T. I. Ryu, M. J. Lee, M. K. Song, S. H. Jin, J. W. Lee, and Y. S. Gal, Macromol. Chem. Phys., 209, 1967 (2008).CrossRefGoogle Scholar
  19. (19).
    S. Bakbak, P. J. Leech, B. E. Carson, S. Saxena, W. P. King, and U. H. F. Bunz, Macromolecules. 39, 6793 (2006).CrossRefGoogle Scholar
  20. (20).
    C. S. Krämer and T. J. J. Müller, Eur. J. Org. Chem., 3534 (2003).Google Scholar
  21. (21).
    D. J. V. C. Van Steenis, O. R. P. David, G. P. F. Van Strijdonck, J. H. Van Maarseveen, and J. N. H. Reek, Chem. Commun., 4333 (2005).Google Scholar
  22. (22).
    H. J. Suh, S. H. Jin, Y. S. Gal, K. Koh, and S. H. Kim, Dyes. Pigments, 58, 127 (2003).CrossRefGoogle Scholar
  23. (23).
    H. J. Koo, J. Park, B. Yoo, K. Yoo, K. Kim, and N. G. Park, Inorganica Chimica Acta, 361, 677 (2008).CrossRefGoogle Scholar

Copyright information

© The Polymer Society of Korea and Springer Netherlands 2011

Authors and Affiliations

  • Myungkwan Song
    • 1
  • Jin Su Park
    • 1
  • Yeol Ho Kim
    • 1
  • Md. Anwarul Karim
    • 1
  • Sung-Ho Jin
    • 1
  • Ryang So Ree
    • 2
  • Young Rae Cho
    • 3
  • Yeong-Soon Gal
    • 4
  • Jae Wok Lee
    • 5
  1. 1.Department of Chemistry Education, Interdisciplinary Program of Advanced Information and Display MaterialsPusan National UniversityBusanKorea
  2. 2.Department of Molecular BiologyPusan National UniversityBusanKorea
  3. 3.Department of Materials Science and EngineeringPusan National UniversityBusanKorea
  4. 4.Polymer Chemistry LabKyungil UniversityGyeongbukKorea
  5. 5.Department of ChemistryDong-A UniversityBusanKorea

Personalised recommendations