Macromolecular Research

, Volume 19, Issue 6, pp 622–628 | Cite as

Control of molecular weight distribution for polypropylene obtained by commercial ziegler-natta catalyst: Effect of electron donor

  • He-Xin Zhang
  • Young-Joo Lee
  • Joon-Ryeo Park
  • Dong-Ho Lee
  • Keun-Byoung YoonEmail author


Polymerization of propylene was carried out using a MgCl2-supported TiCl4 catalyst in conjunction with triethylaluminium (TEA) as the cocatalyst and various types of alkoxy silane compounds as an external donor. The effect of the external donor on the performance of the catalyst with different internal donors was investigated. The polydispersity index (PDI) of polypropylene (PP) obtained with the diether and succinate based catalyst were decreased with the introduction of an external donor and the PDI increased for the phthalate based catalyst. The molecular weight and PDI increased with the introduction of an external donor. The highest PDI of PP was obtained by polymerization with di-n-propyldimethoxysilane (DnPDMS) as an external donor. In addition, a mixture of external donors was used to control the PDI of PP and the composition of the catalyst was examined after treated with TEA/external donor. Furthermore, the theoretical PDI value was calculated for a mixture of external donor systems. The PDI of PP could be controlled and predicted while retaining high activity, high isospecificity and high molecular weight by changing the structure of the external donor and/or their mixture. Open image in new window


polypropylene molecular weight distribution internal donor external donor 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. (1).
    Y. V. Kissin, Alkene Polymerization Reactions with Transition Metal Catalysts, Elsevier, Amsterdam, 2008.Google Scholar
  2. (2).
    N. Kashiwa, J. Polym. Sci. Part A: Polym. Chem., 42, 1 (2004).CrossRefGoogle Scholar
  3. (3).
    K. Soga, T. Shiono, and Y. Doi, Makromol. Chem., 189, 1531 (1988).CrossRefGoogle Scholar
  4. (4).
    M. C. Sacchi, F. Forlini, I. Tritto, P. Locatelli, G. Morini, L. Noristi, and E. Albizzati, Macromolecules, 29, 3341 (1996).CrossRefGoogle Scholar
  5. (5).
    M. Gao, H. Liu, J. Wang, C. Li, J. Ma, and G. Wei, Polymer, 45, 2175 (2004).CrossRefGoogle Scholar
  6. (6).
    T. Keii, Y. Doi, E. Suzuki, M. Tamura, M. Murata, and K. Soga, Makromol. Chem., 185, 1537 (1984).CrossRefGoogle Scholar
  7. (7).
    M. C. Forte and F. M. B. Coutinho, Eur. Polym. J., 32, 605 (1996).CrossRefGoogle Scholar
  8. (8).
    G. Cecchin, G. Morini, and A. Pelliconi, Macromol. Symp., 173, 195 (2001).CrossRefGoogle Scholar
  9. (9).
    G. Morini, G. Balbontin, Y. Gulevich, H. Duijghuisen, R. Kelder, P. A. Klusener, and F. Korndorffer, WO 0063261 (2000).Google Scholar
  10. (10).
    A. Correa, F. Piemontesi, G. Morini, and L. Cavallo, Macromolecules, 40, 9181 (2007).CrossRefGoogle Scholar
  11. (11).
    H. Matsuoka, B. Liu, H. Nakaani, I. Nishiyama, and M. Terano, Polym. Int., 51, 781 (2002).CrossRefGoogle Scholar
  12. (12).
    D. H. Lee and Y. T. Jeong, Eur. Polym. J., 29, 883 (1993).CrossRefGoogle Scholar
  13. (13).
    M. C. Sacchi, F. Forlini, I. Tritto, R. Mendichi, G. Zannoni, and L. Noristi, Macromolecules, 25, 5914 (1992).CrossRefGoogle Scholar
  14. (14).
    A. Proto, L. Oliva, C. Pellecchia, A. J. Sivak, and L. A. Cullo, Macromolecules, 23, 2904 (1990).CrossRefGoogle Scholar
  15. (15).
    J. R. Park, H. S. Jang, S. Y. Kim, and J. K. An, KR-A-10-2006-0038102 (2006).Google Scholar
  16. (16).
    M. Galimberti, F. Piemontesi, U. Giannini, and E. Albizzati, Macromolecules, 26, 6771 (1993).CrossRefGoogle Scholar
  17. (17).
    J. V. Seppala, M. Harkonen, and L. Luciani, Makromol. Chem., 190, 2535 (1989).CrossRefGoogle Scholar
  18. (18).
    M. Harkonen, J. V. Seppala, and T. Vaananen, Makromol. Chem., 192, 721 (1991).CrossRefGoogle Scholar
  19. (19).
    Y. P. Chen, Z. Q. Fan, J. H. Liao, and S. Q. Liao, J. Appl. Polym. Sci., 102, 1768 (2006).CrossRefGoogle Scholar
  20. (20).
    C. Tzoganakis, J. Vlachopoulos, A. E. Hamielec, and D. M. Shinozaki, Polym. Eng. Sci., 29, 390 (1989).CrossRefGoogle Scholar
  21. (21).
    Y. V. Kissin, R. Ohnishi, and T. Konakazawa, Macromol. Chem. Phys., 205, 284 (2004).CrossRefGoogle Scholar
  22. (22).
    W. R. Krigbaum and I. Uematsu, J. Polym. Sci. Part A, 3, 767 (1965).Google Scholar
  23. (23).
    E. Albizzati, U. Giannini, G. Morini, A. C. Smith, and R. C. Ziegler, Ziegler Catalysts, G. Fink, R. Mulhaupt, and H. H. Britzinger, Eds., Springer-Verlag, Berlin, 1995, pp 413–425.Google Scholar
  24. (24).
    Y. V. Kissin, J. Polym. Sci. Part A: Polym. Chem., 41, 1745 (2003).CrossRefGoogle Scholar
  25. (25).
    B. Liu, T. Nitta, H. Nakatani, and M. Terano, Macromol. Chem. Phys., 204, 395 (2003).CrossRefGoogle Scholar
  26. (26).
    M. Kakugo, T. Miyatake, Y. Naito, and K. Mizunuma, Macromolecules, 21, 314 (1988).CrossRefGoogle Scholar
  27. (27).
    K. Soga and T. Shiono, Transition Metal Catalyzed Polymerizations, R. P. Quirk, Ed., Cambridge University Press, Cambridge, 1988, pp 266–279.Google Scholar

Copyright information

© The Polymer Society of Korea and Springer Netherlands 2011

Authors and Affiliations

  • He-Xin Zhang
    • 1
    • 2
  • Young-Joo Lee
    • 3
  • Joon-Ryeo Park
    • 3
  • Dong-Ho Lee
    • 4
  • Keun-Byoung Yoon
    • 2
    Email author
  1. 1.Laboratory of Polymer Engineering, Changchun Institute of Applied ChemistryChinese Academy of SciencesChangchunPR China
  2. 2.Department of Polymer Science and EngineeringKyungpook National UniversityDaeguKorea
  3. 3.Catalyst&Process Development DivisionR&D Center Samsung Total Petrochemicals Co. Ltd.ChungnamKorea
  4. 4.Dongyang Mirae UniversitySeoulKorea

Personalised recommendations