Macromolecular Research

, Volume 19, Issue 5, pp 511–514 | Cite as

Formation of thiol-functionalized silica films by layer-by-layer self-assembly and biomimetic silicification

  • Sung Ho Yang
  • Eun Hyea Ko
  • Insung S. Choi


Silicic Acid TMOS Silica Film Gold Substrate Thiol Functional Group 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. (1).
    R. L. Brutchey and D. E. Morse, Chem. Rev., 108, 4915 (2008).CrossRefGoogle Scholar
  2. (2) (a).
    E. G. Bellomo and T. J. Deming, J. Am. Chem. Soc., 128, 2276 (2006).CrossRefGoogle Scholar
  3. (2) (b).
    M. M. Tomczak, D. D. Glawe, L. F. Drummy, C. G. Lawrence, M. O. Stone, C. C. Perry, D. J. Pochan, T. J. Deming, and R. R. Naik, J. Am. Chem. Soc., 127, 12577 (2005).CrossRefGoogle Scholar
  4. (2) (c).
    J. J. Yuan and R. H. Jin, Adv. Mater., 17, 885 (2005).CrossRefGoogle Scholar
  5. (2) (d).
    E. Brunner, K. Lutz, and M. Sumper, Phys. Chem. Chem. Phys., 6, 854 (2004).CrossRefGoogle Scholar
  6. (2) (e).
    M. R. Knecht and D. W. Wright, Langmuir, 20, 4728 (2004).CrossRefGoogle Scholar
  7. (2) (f).
    M. R. Knecht and D. W. Wright, Chem. Commun., 243, 3038 (2003).CrossRefGoogle Scholar
  8. (2) (g).
    S. V. Patwardhan and S. Clarson, J. Mater. Sci. Eng., 23, 495 (2003).Google Scholar
  9. (3) (a).
    S. H. Yang and I. S. Choi, Bull. Korean Chem. Soc., 31, 753 (2010).CrossRefGoogle Scholar
  10. (3) (b).
    S. H. Yang, J. H. Park, and I. S. Choi, Bull. Korean Chem. Soc., 30, 2165 (2009).CrossRefGoogle Scholar
  11. (3) (c).
    S. H. Yang and I. S. Choi, Chem. Asian J., 4, 382 (2009).CrossRefGoogle Scholar
  12. (3) (d).
    S. H. Yang, J. H. Park, W. K. Cho, H.-S. Lee, and I. S. Choi, Small, 5, 1947 (2009).CrossRefGoogle Scholar
  13. (3) (e).
    D. J. Kim, K.-B. Lee, T. G. Lee, H. K. Shon, W.-J. Kim, H.-J. Paik, and I. S. Choi, Small, 1, 992 (2005).CrossRefGoogle Scholar
  14. (3) (f).
    D. J. Kim, K. B. Lee, Y. S. Chi, W. J. Kim, H.-J. Paik, and I. S. Choi, Langmuir, 20, 7904 (2004).CrossRefGoogle Scholar
  15. (4) (a).
    H. K. Baca, C. Ashley, E. Carnes, D. Lopez, J. Flemming, D. Dunphy, S. Singh, Z. Chen, N. Liu, H. Fan, G. P. López, S. M. Brozik, M. Werner-Washburne, and C. J. Brinker, Science, 313, 337 (2006).CrossRefGoogle Scholar
  16. (4) (b).
    H. R. Luckarift, J. C. Spain, R. R. Naik, and M. O. Stone, Nat. Biotechnol., 22, 211 (2004).CrossRefGoogle Scholar
  17. (4) (c).
    N. Nassif, O. M. M. Bouvet, M. N. Rager, C. Roux, T. Coradin, and J. Livage, Nat. Mater., 1, 42 (2002).CrossRefGoogle Scholar
  18. (5).
    S. H. Yang, K.-B. Lee, B. Kong, J.-H. Kim, H.-S. Kim, and I. S. Choi, Angew. Chem. Int. Ed., 48, 9160 (2009).CrossRefGoogle Scholar
  19. (6).
    A. P. Wight and M. E. Davis, Chem. Rev., 102, 3589 (2002).CrossRefGoogle Scholar
  20. (7).
    W. K. Cho, S. M. Kang, D. J. Kim, S. H. Yang, and I. S. Choi, Langmuir, 22, 11208 (2006).CrossRefGoogle Scholar
  21. (8) (a).
    N. Kröger, R. Deutzmann, C. Bergsdorf, and M. Sumper, Proc. Natl. Acad. Sci. USA, 97, 14133 (2000).CrossRefGoogle Scholar
  22. (8) (b).
    M. Sumper, Science, 295, 2430 (2002).CrossRefGoogle Scholar
  23. (8) (c).
    N. Kröger, S. Lorenz, E. Brunner, and M. Sumper, Science, 298, 584 (2002).CrossRefGoogle Scholar
  24. (8) (d).
    M. Sumper, S. Lerenz, and E. Brunner, Angew. Chem. Int. Ed., 42, 5192 (2003).CrossRefGoogle Scholar
  25. (8) (e).
    M. Sumper and N. Kröger, J. Mater. Chem., 14, 2059 (2004).CrossRefGoogle Scholar
  26. (8) (f).
    M. Sumper, Angew. Chem. Int. Ed., 43, 2251 (2004).CrossRefGoogle Scholar
  27. (8) (g).
    M. Sumper and E. Brunner, Adv. Funct. Mater., 16, 17 (2006).CrossRefGoogle Scholar
  28. (9) (a).
    B. T. Houseman, E. S. Gawalt, and M. Mrksich Langmuir, 19, 1522 (2003).CrossRefGoogle Scholar
  29. (9) (b).
    S. S. Ghosh, P. M. Kao, A. W. McCue, and H. L. Chappelle, Bioconjugate Chem., 1, 71 (1990).CrossRefGoogle Scholar
  30. (9) (c).
    C.-W. Wu, L. R. Yarbrough, and F. Y. H. Wu, Biochemistry, 15, 2863 (1976).CrossRefGoogle Scholar
  31. (9) (d).
    I. Ginzburg, R. Miskin, and A. Zamir, J. Mol. Bio., 79, 481 (1973).CrossRefGoogle Scholar
  32. (10) (a).
    H. Kumagi and K. Yano, Chem. Mater., 22, 5112 (2010).CrossRefGoogle Scholar
  33. (10) (b).
    T. Nakamura, M. Mizutani, H. Nozaki, N. Suzuki, and K. Yano, J. Phys. Chem. C, 111, 1093 (2007).CrossRefGoogle Scholar
  34. (10) (c).
    T. Nakamura, Y. Yamada, and K. Yano, J. Mater. Chem., 17, 3726 (2007).CrossRefGoogle Scholar
  35. (11) (a).
    C. Brunot, L. Ponsonnet, C. Lagneau, P. Farge, C. Picarte, and B. Grosgogeat, Biomaterials, 28, 632 (2007).CrossRefGoogle Scholar
  36. (11) (b).
    S. Lakard, G. Herlem, A. Propper, A. Kastner, G. Michel, N. Vallés-Villarreal, T. Gharbi, and B. Fahys, Bioelectrochemistry, 62, 19 (2004).CrossRefGoogle Scholar
  37. (11) (c).
    K. Morimoto, M. Nishikawa, S. Kawakami, T. Nakano, Y. Hattori, S. Fumoto, F. Yamashita, and M. Hashida, Mol. Ther., 7, 254 (2003).CrossRefGoogle Scholar
  38. (11) (d).
    P. Tryoen-Tóth, D. Vautier, Y. Haikel, J.-C. Voegel, P. Schaaf, J. Chluba, and J. Ogier, J. Biomed. Mater. Res., 60, 657 (2002).CrossRefGoogle Scholar
  39. (12) (a).
    R.-H. Jin and J.-J. Yuan, Adv. Mater., 21, 3750 (2009).CrossRefGoogle Scholar
  40. (12) (b).
    P. A. Patel, J. Eckart, M. C. Advincula, A. J. Goldberg, and P. T. Mather, Polymer, 50, 1214 (2009).CrossRefGoogle Scholar
  41. (12) (c).
    P.-X. Zhu and R.-H. Jin, J. Mater. Chem., 18, 313 (2008).CrossRefGoogle Scholar
  42. (12) (d).
    J.-J. Yuan, P.-X. Zhu, N. Fukazawa, and R.-H. Jin, Adv. Funct. Mater., 16, 2205 (2006).CrossRefGoogle Scholar
  43. (12) (e).
    J.-J. Yuan and R.-H. Jin, Adv. Mater., 17, 885 (2005).CrossRefGoogle Scholar
  44. (12) (f).
    R.-H. Jin and J.-J. Yuan, Chem. Commun., 21, 1399 (2005).CrossRefGoogle Scholar
  45. (13) (a).
    H. Fujimoto, K. Kato, and H. Iwata, Anal. Bioanal. Chem., 397, 571 (2010).CrossRefGoogle Scholar
  46. (13) (b).
    S. Song and N. Hu, J. Phys. Chem. B, 114, 3648 (2010).CrossRefGoogle Scholar
  47. (13) (c).
    B. Wang, X. Du, M. Wang, W. Gong, and J.-I. Anzaia, Electroanalysis, 20, 1028 (2008).CrossRefGoogle Scholar
  48. (13) (d).
    B. Wang and J.-I. Anzai, Langmuir, 23, 7378 (2007).CrossRefGoogle Scholar
  49. (13) (e).
    H. Yu, T. Cao, L. Zhou, E. Gu, D. Yu, and D. Jiang, Sensor Actuator B, 119, 512 (2006).CrossRefGoogle Scholar
  50. (13) (f).
    H. Inoue and J.-I. Anzai, Langmuir, 21, 8354 (2005).CrossRefGoogle Scholar
  51. (13) (g).
    F. Yamauchi, K. Kato, and H. Iwata, Langmuir, 21, 8360 (2005).CrossRefGoogle Scholar
  52. (13) (h).
    J.-I. Anzai, Y. Kobayashi, N. Nakamura, M. Nishimura, and T. Hoshi, Langmuir, 15, 221 (1999).CrossRefGoogle Scholar
  53. (14) (a).
    J. C. Yang, M. J. Jablonsky, and J. W. Mays, Polymer, 43, 5125 (2002).CrossRefGoogle Scholar
  54. (14)(b).
    Z. Su, X. Li, and S. L. Hsu, Macromolecules, 27, 287 (1994).CrossRefGoogle Scholar
  55. (14)(c).
    E. B. Orler, D. J. Yontz, and R. B. Moore, Macromolecules, 26, 5157 (1993).CrossRefGoogle Scholar
  56. (14)(d).
    M. Rigdahl and A. Eisenberg, J. Polym. Sci., Polym. Phys. Ed., 19, 1641 (1981).CrossRefGoogle Scholar
  57. (14)(e).
    M. Morton and L. J. Fetters, Rubber Chem. Technol., 48, 359 (1975).CrossRefGoogle Scholar
  58. (15).
    N. Colthup, L. Daly, and S. Wiberley, in Introduction to Infrared and Raman Spectroscopy, 3rd Eds., Academic Press, San Diego, 1990, p 371.Google Scholar
  59. (16).
    N. A. Lapin and Y. J. Chabal, J. Phys. Chem. B, 113, 8776 (2009).CrossRefGoogle Scholar

Copyright information

© The Polymer Society of Korea and Springer Netherlands 2011

Authors and Affiliations

  1. 1.Molecular-Level Interface Research Center, Department of ChemistryKAISTDaejeonKorea

Personalised recommendations