Advertisement

Macromolecular Research

, 19:307 | Cite as

Radiation cross-linked carboxymethylated starch and iron removal capacity in aqueous solution

  • Bhoj Raj Pant
  • Hye-Jin Jeon
  • Hyun Hoon Song
Article

Abstract

Cross-linked carboxymethylated starch derivatives were synthesized and tested for their iron adsorbing capacity in aqueous solutions. To obtain the highly substituted carboxymethyl starch (CMS), a multi-step carboxymethylation process was adopted. The CMS with DS = 0.92 in aqueous medium was then exposed to electron beam radiation (EB) at various doses to yield the cross-linked carboxymethyl starch (CCMS). The CCMS of maximum gel content (87.1%) was obtained at 50 kGy with a 50% (w/v) aqueous CMS solution. The iron removal capacity of the CCMS was almost independent of the pH of the metal solution in the acidic range (pH 3–5), where the physical entrapment of the ion is dominant over a chelation reaction. The high physical entrapment was apparently associated with the high cross-link density. The adsorption capacity improved when the pH approached neutral but the iron showed complete precipitation at pH 7.

Keywords

cross-linked carboxymethyl starch electron beam irradiation gel content metal adsorption physical entrapment chelation reaction 

References

  1. (1).
    R. R. Crichton, Inorganic Biochemistry of Iron Metabolism, Ellis Harwood, Chichester, England, 1991.Google Scholar
  2. (2).
    E. S. Gurzau, C. Neagu, and A. E. Gurzau, Ecotox. Env. Safety, 56, 200 (2003).Google Scholar
  3. (3).
    N. Kontari, Water Eng. Manag., 135, 25 (1988).Google Scholar
  4. (4).
    Iron and sulfur bacteria in water supplies, http://www.cdphe.state.co.us/lr/Water/IronSulphurBacteria.pdf, Accessed 31 October (2009).
  5. (5).
    World Health Organization: Guidelines for drinking water quality, Recommendations, WHO, Geneva, 1984.Google Scholar
  6. (6).
    D. Ellis, C. Bouchard, and G. Lantagne, Desalination, 130, 255 (2000).CrossRefGoogle Scholar
  7. (7).
    R. Munter, H. Ojaste, and J. Sutt, J. Environ. Eng., 131, 1014 (2005).CrossRefGoogle Scholar
  8. (8).
    W. C. Andersen and T. Bruno, J. Anal. Chem. Acta, 485, 1 (2003).CrossRefGoogle Scholar
  9. (9).
    P. Berbenni, A. Pollice, R. Canziani, L. Stabile, and F. Nobili, Bio-res. Tech., 74, 109 (2000).CrossRefGoogle Scholar
  10. (10).
    H. A. Aziz, M. S. Yusoff, M. N. Adlan, N. H. Adnan, and S. Alias, Waste Manag., 24, 353 (2004).CrossRefGoogle Scholar
  11. (11).
    G. S. Chauhan, L. Guleria, and R. Sharma, Cellulose, 12, 97 (2005).CrossRefGoogle Scholar
  12. (12).
    R. A. A. Muzzarelli, Natural Chelating Polymers, Pergamon, New York, 1973.Google Scholar
  13. (13).
    L. W. Roy, N. B. James, and F. P. Eugene, Starch Chemistry and Technology, Academic Press, 1984.Google Scholar
  14. (14).
    A. Bhattacharya, Prog. Polym. Sci., 25, 371 (2000).CrossRefGoogle Scholar
  15. (15).
    Z. Stojanovic, K. Jeremic, S. Jovanovic, and M. D. Lechner, Starch/Starke, 57, 79 (2005).CrossRefGoogle Scholar
  16. (16).
    N. Nagasawa, T. Yagi, T. Kume, and F. Yoshii, Carbohydr. Polym., 58, 109 (2004).CrossRefGoogle Scholar
  17. (17).
    A. Chapiro, Radiation Chemistry of Polymeric Systems, John Wiley, New York, 1962.Google Scholar
  18. (18).
    F. Yoshii and T. Kume, U.S. Pat. 6617448 (2003).Google Scholar
  19. (19).
    B. Fei, R. A. Wach, H. Mitomo, F. Yoshii, and T. Kume, J. Appl. Polym. Sci., 78, 278 (2000).CrossRefGoogle Scholar
  20. (20).
    B. R. Pant, H.-J. Jeon, C.-I. Park, B. C. Lee, J. H. Park, and H. H. Song, Starch/Starke, 62, 11 (2010).CrossRefGoogle Scholar
  21. (21).
    D.-K. Kweon, J.-K. Choi, E.-K. Kim, and S.-T. Lim, Carbohydr. Polym., 46, 171 (2001).CrossRefGoogle Scholar
  22. (22).
    B. S. Kim and S.-T. Lim, Carbohydr. Polym., 39, 217 (1999).CrossRefGoogle Scholar
  23. (23).
    I. Villaescusa, N. Fiol, M. Martinez, N. Miralles, J. Poch, and J. Serarols, Water Res., 38, 992 (2004).CrossRefGoogle Scholar
  24. (24).
    M. Ajmal, A. H. Khan, S. Ahmad, and A. Ahmad, Water Res., 32, 3085 (1998).CrossRefGoogle Scholar
  25. (25).
    G. J. Houben, Appl. Geochem., 18, 927 (2003).CrossRefGoogle Scholar
  26. (26).
    S. K. Sharma, Adsorptive Iron Removal Groundwater, books. google.com/books?isbn=9054104309, 2001.Google Scholar
  27. (27).
    M. Hove, R. P. Hille, and A. E. Lewis, American Institute of Chemical Engineers Journal, 10, 53 (2007).Google Scholar

Copyright information

© The Polymer Society of Korea and Springer Netherlands 2011

Authors and Affiliations

  1. 1.Department of Advanced MaterialsHannam UniversityDaejeonKorea

Personalised recommendations