Thermal stability and impact and flexural properties of epoxy resins/epoxidized castor oil/nano-CaCO3 ternary systems
- 217 Downloads
- 22 Citations
Abstract
Epoxy ternary systems were prepared from the diglycidylether of bisphenol-A (DGEBA), epoxidized castor oil (ECO), and nano-CaCO3 using a thermally latent initiator. The effects of ECO and the nano-CaCO3 contents on the thermal stability and mechanical interfacial properties of the prepared DGEBA/ECO/nano-CaCO3 ternary systems were examined by thermogravimetric analysis (TGA), Izod impact tests, and mechanical tests. The morphology of the ternary systems was examined by scanning electron microscopy (SEM) and transmission electron microscopy (TEM). The statistic heat-resistant index temperature (T s ) of the ternary systems was approximately constant up to 30 wt% ECO, and thereafter decreased with increasing ECO content. The impact strength of the ternary systems was improved by the addition of ECO and nano-CaCO3. The flexural strength of the ternary systems exhibited a maximum value at 20 wt% ECO. SEM showed that shear deformation occurred, which prevented the propagation of cracks in the DGEBA/ECO/nano-CaCO3 ternary systems.
Keywords
epoxy resins nano-CaCO3 epoxidized castor oil thermal stabilities impact strengthPreview
Unable to display preview. Download preview PDF.
References
- (1).R. S. Bauer, “Epoxy Resin Chemistry”, Advanced in Chemistry Series, No. 114, American Chemical Society, Washington, DC, 1979, p. 1.Google Scholar
- (2).C. Chen, R. S. Justice, D. W. Schaefer, and J. W. Baur, Polymer, 49, 3805 (2008).CrossRefGoogle Scholar
- (3).E. Serrano, A. Tercjak, G. Kortaberria, J. A. Pomposo, D. Mecerreyes, N. E. Zafeiropoulos, M. Stamm, and I. Mondragon, Macromolecules, 39, 2254 (2006).CrossRefGoogle Scholar
- (4).S. Goossens, B. Goderis, and G. Groeninckx, Macromolecules, 39, 2953 (2006).CrossRefGoogle Scholar
- (5).S. Xue, M. Reinholdt, and T. J. Pinnavaia, Polymer, 47, 3344 (2006).CrossRefGoogle Scholar
- (6).S. Q. Ma, W. Q. Liu, D. Yu, and Z. F. Wang, Macromol. Res., 18, 22 (2010).CrossRefGoogle Scholar
- (7).J. Zhu, K. Chandrashekhara, V. Flanigan, and S. Kapila, Compos. Part A, 35, 95 (2004).CrossRefGoogle Scholar
- (8).Z. S. Liu, S. Z. Erhan, and P. D. Calvert, J. Appl. Polym. Sci., 93, 356 (2004).CrossRefGoogle Scholar
- (9).H. Miyagawa, A. K. Mohanty, M. Misra, and L. T. Drzal, Macromol. Mater. Eng., 289, 636 (2004).CrossRefGoogle Scholar
- (10).H. Miyagawa, M. Misra, L. T. Drzal, and A. K. Mohanty, Polymer, 46, 445 (2005).CrossRefGoogle Scholar
- (11).S. J. Park, F. L. Jin, and J. R. Lee, Macromol. Rapid Commun., 25, 724 (2004).CrossRefGoogle Scholar
- (12).S. J. Park, F. L. Jin, and J. R. Lee, Macromol. Chem. Phys., 205, 2048 (2004).CrossRefGoogle Scholar
- (13).S. J. Park, F. L. Jin, and J. R. Lee, Mater. Sci. Eng. A, 374, 109 (2004).CrossRefGoogle Scholar
- (14).F. L. Jin and S. J. Park, Mater. Sci. Eng. A, 478, 402 (2008).CrossRefGoogle Scholar
- (15).F. L. Jin and S. J. Park, Polym. Int., 57, 577 (2008).CrossRefGoogle Scholar
- (16).J. Tarrío-Saavedra, J. López-Beceiro, S. Naya, and R. Artiaga, Polym. Degrad. Stabil., 93, 2133 (2008).CrossRefGoogle Scholar
- (17).S. J. Park, F. L. Jin, and J. R. Lee, Macromol. Res., 13, 8 (2005).Google Scholar
- (18).R. S. Lehrle and R. J. Williams, Macromolecules, 27, 3782 (1994).CrossRefGoogle Scholar
- (19).M. R. Grimbley and R. S. Lehrle, Polym. Degrad. Stabil., 49, 223 (1995).CrossRefGoogle Scholar
- (20).B. Jiang, J. Hao, W. Wang, L. Jiang, and X. Cai, Eur. Polym. J., 37, 463 (2001).CrossRefGoogle Scholar
- (21).Y. C. Chiu, I. C. Chou, W. C. Tseng, and C. C. M. Ma, Polym. Degrad. Stabil., 93, 668 (2008).CrossRefGoogle Scholar
- (22).F. L. Jin and S. J. Park, Bull. Korean Chem. Soc., 30, 334 (2009).CrossRefGoogle Scholar