Advertisement

Macromolecular Research

, Volume 18, Issue 7, pp 695–700 | Cite as

A new method of active center determination for olefin polymerization with supported Ziegler-Natta catalysts

  • Letian Zhang
  • Zhisheng Fu
  • Zhiqiang FanEmail author
Article

Abstract

A novel method based on a reaction between the growing polymer chain and cinnamoyl chloride (CC) was developed to determine the number of active centers (C p ) in olefin polymerization with supported Ziegler-Natta catalysts. The reaction of titanium-polymeryl bonds in the active centers of MgCl2/ID/TiCl4-AlR3 type catalysts with CC was very fast at 20∼80 °C. Cinnamoyl labeled polymer chains were formed, which were stable in the reaction system for at least 10 min when the CC/Al molar ratio was > 1. The number of active centers was determined by measuring the number of carbonyl groups in the polymer with the UV-vis method. The C p values of the 1-hexene polymerization systems with the addition of hydrogen were also measured.

Keywords

Ziegler-Natta polymerization catalysts active centers measurement method 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. (1).
    G. Morini, E. Albizzati, G. Balbontin, I. Mingozzi, M. C. Sacchi, F. Forlini, and I. Tritto, Macromolecules, 29, 5770 (1996).CrossRefGoogle Scholar
  2. (2).
    Y. V. Kissin, R. I. Mink, and T. E. Nowlin, J. Polym. Sci. Part A: Polym. Chem., 37, 4255 (1999).CrossRefGoogle Scholar
  3. (3).
    I. Nishiyama, B. P. Liu, H. Matusoka, H. Nakatani, and M. Terano, Macromol. Symp., 193, 71 (2003).CrossRefGoogle Scholar
  4. (4).
    B. P. Liu, T. Nitta, H. Nakatani, and M. Terano, Macromol. Symp., 213, 7 (2004).CrossRefGoogle Scholar
  5. (5).
    Y. V. Kissin, J. Polym. Sci. Part A: Polym. Chem., 41, 1745 (2003).CrossRefGoogle Scholar
  6. (6).
    Y. V. Kissin, F. M. Mirabella, and C. C. Meverden, J. Polym. Sci. Part A: Polym. Chem., 43, 4351 (2005).CrossRefGoogle Scholar
  7. (7).
    Y. V. Kissin, J. C. Chadwick, I. Mingozzi, and G. Morini, Macromol. Chem. Phys., 207, 1344 (2006).CrossRefGoogle Scholar
  8. (8).
    Y. S. Ko, J. K. Jeon, J. H. Yim, and Y. K. Park, Macromol. Res., 17, 296 (2009).Google Scholar
  9. (9).
    Z. Q. Fan, L. X. Feng, and S. L. Yang, J. Polym. Sci. Part A: Polym. Chem., 34, 3329 (1996).CrossRefGoogle Scholar
  10. (10).
    M. M. Marques, P. J. T. Tait, J. Mejzlik, and A. R. Dias, J. Polym. Sci. Part A: Polym. Chem., 36, 573 (1998).CrossRefGoogle Scholar
  11. (11).
    A. K. Yaluma, P. J. T. Tait, and J. C. Chadwick, J. Polym. Sci. Part A: Polym. Chem., 44, 1635 (2006).CrossRefGoogle Scholar
  12. (12).
    G. D. Bukatov, V. A. Zakharov, and Y. I. Yermakov, Makromol. Chem., 179, 2097 (1978).CrossRefGoogle Scholar
  13. (13).
    J. Mejzlik and M. Lesna, Makromol. Chem., 178, 261 (1977).CrossRefGoogle Scholar
  14. (14).
    J. Mejzlik, M. Lesna, and J. Majer, J. Makromol. Chem., 184, 1975 (1983).CrossRefGoogle Scholar
  15. (15).
    D. R. Burfield and C. M. Savariar, Macromolecules, 12, 243 (1979).CrossRefGoogle Scholar
  16. (16).
    V. Warzelhan, T. F. Burger, and D. J. Stein, Makromol. Chem., 183, 489 (1982).CrossRefGoogle Scholar
  17. (17).
    J. Mejzlik, M. Lesna, and J. Kratochvila, J. Adv. Polym. Sci., 81, 83 (1986).CrossRefGoogle Scholar
  18. (18).
    A. P. Vozka and J. Mejzlik, J. Makromol. Chem., 190, 1489 (1989).CrossRefGoogle Scholar
  19. (19).
    A. P. Vozka and J. Mejzlik, J. Makromol. Chem., 191, 589 (1990).CrossRefGoogle Scholar
  20. (20).
    A. P. Vozka and J. Mejzlik, J. Makromol. Chem., 191, 1519 (1990).CrossRefGoogle Scholar
  21. (21).
    Y. V. Kissin, J. Catal., 200, 232 (2001).CrossRefGoogle Scholar
  22. (22).
    G. D. Bukatov, V. S. Goncharov, and V. A. Zakharov, Makromol. Chem., 187, 1041 (1986).CrossRefGoogle Scholar
  23. (23).
    B. P. Liu, H. Matsuoka, and M. Terano, Macromol. Rapid Commun., 22, 1 (2001).CrossRefGoogle Scholar
  24. (24).
    H. Mori and M. Terano, Trends Polym. Sci., 5, 314 (1997).Google Scholar
  25. (25).
    I. Tritto, M. C. Sacchi, and P. Locatelli, Makromol. Chem. Rapid Commun., 4, 623 (1983).CrossRefGoogle Scholar
  26. (26).
    Z. Q. Fan, L. X. Feng, and S. L. Yang, Acta Polym. Sin. (Chinese), 4, 503 (1991).Google Scholar
  27. (27).
    Z. Q. Fan, L. X. Feng, and S. L. Yang, Chinese J. Polym. Sci., 9, 113 (1991).Google Scholar
  28. (28).
    L. T. Zhang, Z. Q. Fan, and Z. S. Fu, e-Polymers, 143, 1 (2008).Google Scholar
  29. (29).
    V. Busico, R. Cipullo, C. Polzone, G. Talarico, and J. C. Chadwick, Macromolecules, 36, 2616 (2003).CrossRefGoogle Scholar
  30. (30).
    V. Busico, J. C. Chadwick, R. Cipullo, S. Ronca, and G. Talarico, Macromolecules, 37, 7437 (2004).CrossRefGoogle Scholar
  31. (31).
    V. Busico, R. Cipullo, and P. Corradini, Makromol. Chem., 194, 1079 (1993).CrossRefGoogle Scholar
  32. (32).
    V. Busico, R. Cipullo, V. Romanelli, S. Ronca, and M. Togrou, J. Am. Chem. Soc., 127, 1608 (2005).CrossRefGoogle Scholar
  33. (33).
    T. Mole and E. A. Jeffery, in Organoaluminium Compounds, Elsevier Publishing Company, Amsterdam, 1972, pp 294–300.Google Scholar
  34. (34).
    J. B. P. Soares and A. E. Hamielec, Polymer, 37, 4599 (1996).CrossRefGoogle Scholar
  35. (35).
    G. Guastalla and U. Giannini, Makromol. Chem., Rapid Commun., 4, 519 (1983).CrossRefGoogle Scholar
  36. (36).
    G. D. Bukatov, V. S. Goncharov, and V. A. Zakharov, Macromol. Chem. Phys., 196, 1751 (1995).CrossRefGoogle Scholar
  37. (37).
    I. W. Parsons and T. M. Alturki, Polym. Commun., 30, 72 (1989).Google Scholar
  38. (38).
    Y. V. Kissin and L. A. Rishina, J. Polym. Sci. Part A: Polym. Chem., 40, 1353 (2002).CrossRefGoogle Scholar

Copyright information

© The Polymer Society of Korea and Springer Netherlands 2010

Authors and Affiliations

  1. 1.MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and EngineeringZhejiang UniversityHangzhouChina
  2. 2.The State Key Laboratory of Chemical Engineering at Zhejiang UniversityHangzhouChina

Personalised recommendations