Macromolecular Research

, Volume 18, Issue 7, pp 660–667 | Cite as

Morphology and properties of polyamide/multi-walled carbon nanotube composites



The effect of van der Waals force interactions between multi-walled carbon nanotubes and the polymer matrix was examined using three different types of polyamides: polyamide 6, polyamide 11 and polyamide 12. A comparison of the degree of dispersion of multi-walled carbon nanotubes in the polymer and the measured physical properties showed that the hydrophobicity of the polymer matrix is an important factor for determining the properties of the polyamide nanocomposite material. Polyamides with longer hydrophobic methylene groups in the repeating unit had a better dispersion of multi-walled carbon nanotubes and correspondingly lower surface resistivity.


polyamide carbon nanotube van der Waals interaction nucleating agent 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. (1).
    R. H. Baughman, A. A. Zakhidov, and W. A. de Heer, Science, 297, 787 (2002).CrossRefGoogle Scholar
  2. (2).
    X. L. Xie, Y. W. Mai, and X. P. Zhou, Mater. Sci. Eng. R, 49, 89 (2005).CrossRefGoogle Scholar
  3. (3).
    M. Moniruzzaman and K. I. Winey, Macromolecules, 39, 5194 (2006).CrossRefGoogle Scholar
  4. (4).
    S. Iijima, Nature, 354, 56 (1991).CrossRefGoogle Scholar
  5. (5).
    A. J. Crosby and J. Y. Lee, Polym. Rev. Lett., 47, 217 (2007).Google Scholar
  6. (6).
    H. Wang, W. Zhou, D. L. Ho, K. I. Winey, J. E. Fischer, C. J. Glinka, and E. K. Hobbie, Nano Lett., 4, 1789 (2004).CrossRefGoogle Scholar
  7. (7).
    M. F. Islam, E. Rojas, D. M. Bergey, A. T. Johnson, and A. G. Yodh, Nano Lett., 3, 269 (2003).CrossRefGoogle Scholar
  8. (8).
    K. Saeed, S. Y. Park, H. J. Lee, J. B. Baek, and W. S. Huh, Polymer, 47, 8019 (2006).CrossRefGoogle Scholar
  9. (9).
    J. N. Coleman, S. Curran, A. B. Dalton, A. P. Davey, B. McCarthy, W. Blau, and R. C. Barklie, Phys. Rev. B, 58, R7492 (1998).CrossRefGoogle Scholar
  10. (10).
    V. C. Moore, M. S. Strano, E. H. Haroz, R. H. Hauge, and R. E. Smalley, Nano Lett., 3, 1379 (2003).CrossRefGoogle Scholar
  11. (11).
    S. H. Lee, J. S. Park, C. M. Koo, B. K. Lim, and S. O. Kim, Macromol. Res., 16, 261 (2008).Google Scholar
  12. (12).
    A. R. Bhattacharyya, P. Ptschke, L. Häußler, and D. Fischer, Macromol. Chem. Phys., 206, 2084 (2005).CrossRefGoogle Scholar
  13. (13).
    K. H. Kim and W. H. Jo, Macromol. Res., 16, 749 (2008).Google Scholar
  14. (14).
    P. V. Kodgire, Chem. Phys. Lett., 432, 480 (2006).CrossRefGoogle Scholar
  15. (15).
    I. Park, M. Park, J. Kim, H. Lee, and M. S. Lee, Macromol. Res., 15, 498 (2007).Google Scholar
  16. (16).
    M. Wang, K. P. Pramoda, and S. H. Goh, Polymer, 46, 11510 (2005).CrossRefGoogle Scholar
  17. (17).
    W. K. Park, J. H. Kim, S. S. Lee, J. Kim, G. W. Lee, and M. Park, Macromol. Res., 13, 206 (2005).Google Scholar
  18. (18).
    J. Li, Z. Fang, L. Tong, A. Gu, and F. Liu, J. Polym. Sci. Polym. Phys., 44, 1499 (2006).CrossRefGoogle Scholar
  19. (19).
    H. D. Bao, Z. X. Guo, and J. Yu, Polymer, 49, 3826 (2008).CrossRefGoogle Scholar
  20. (20).
    H. Ha, K. Ha, and S. C. Kim, Macromol. Res., 18, 512 (2010).CrossRefGoogle Scholar
  21. (21).
    Z. Tuzar, P. Kratochvil, and M. Bohdanecký, J. Polym. Sci. Polym. Sym., 16, 633 (1967).CrossRefGoogle Scholar
  22. (22).
    C. C. Teran, E. M. Macchi, and R. V. Figini, J. Appl. Polym. Sci., 32, 3847 (1986).CrossRefGoogle Scholar
  23. (23).
    B. Lánská, M. Bohdanecký, J. Šebenda, and Z. Tuzer, Eur. Polym. J., 14, 807 (1978).CrossRefGoogle Scholar
  24. (24).
    T. Liu, I. Y. Phang, L. Shen, S. Y. Chow, and W. D. Zhang, Macromolecules, 37, 7214 (2004).CrossRefGoogle Scholar
  25. (25).
    E. Logakis, C. Pandis, V. Peoglos, P. Pissis, C. Stergiou, J. Pionteck, P. Ptschke, M. Mièušik, and M. Omastova, J. Polym. Sci. Polym. Phys., 47, 764 (2009).CrossRefGoogle Scholar
  26. (26).
    I. Y. Phang, J. Ma, L. Shen, T. Liu, and W. D. Zhang, Polym. Int., 55, 71 (2006).CrossRefGoogle Scholar
  27. (27).
    A. C. Brosse, S. T. Girault, P. M. Piccione, and L. Leibler, Polymer, 49, 4680 (2008).CrossRefGoogle Scholar
  28. (28).
    M. I. Kohan, Nylon Plastic Handbook, Hanser Gardner Publications, New York, 1995.Google Scholar
  29. (29).
    J. Li, Z. Fang, Y. Zhu, L. Tong, A. Gu, and F. Liu, J. Appl. Polym. Sci., 105, 3531 (2007).CrossRefGoogle Scholar
  30. (30).
    S. Dasgupta, W. B. Hammond, and W. A. Goddard III, J. Am. Chem. Soc., 118, 12291 (1996).CrossRefGoogle Scholar
  31. (31).
    T. D. Fornes and D. R. Paul, Polymer, 44, 3945 (2003).CrossRefGoogle Scholar
  32. (32).
    H. Zeng, C. Gao, Y. Wnag, P. C. P. Watts, H. Kong, X. Cui, and D. Yan, Polymer, 47, 113 (2006).CrossRefGoogle Scholar

Copyright information

© The Polymer Society of Korea and Springer Netherlands 2010

Authors and Affiliations

  1. 1.Department of Chemical & Biomolecular EngineeringKorea Advanced Institute of Science and TechnologyDaejeonKorea
  2. 2.Department of Chemical EngineeringKeimyung UniversityDaeguKorea

Personalised recommendations