Macromolecular Research

, Volume 18, Issue 6, pp 571–576 | Cite as

Controlled wall thickness and porosity of polymeric hollow nanofibers by coaxial electrospinning

Articles

Abstract

Highly porous polymeric hollow nanofibers were developed using a method based on coaxial electrospinning with inner silicon oil and outer polymer solutions. This method was verified by the fabrication of polymeric hollow fibers, whose diameter and wall thickness could be varied by controlling the coelectrospinning parameters, such as the dielectric constant of the solvents, concentration of the polymer solution, molecular weights of the polymers and viscosity of the inner silicon oil phase. The entire diameter and wall thickness of the hollow fibers could be varied from 5 to 15 μm and 180 to 900 nm, respectively. Highly porous polymeric hollow nanofibers were fabricated by coaxial electrospinning with a highly volatile solvent. The interior surface was quite smooth without pores. Therefore, pore formation occurred at the outer surface of the hollow fibers due to rapid solvent evaporation because the jet only occurred between the surface of the polymer solution and air. The smooth interior and highly porous outer surface, circular cross-section and uniform size of the hollow polymer nanofibers are expected to have attractive applications in areas, such as catalysis, optoelectronics, nanofluidics, drug delivery or biosensorics.

Keywords

hollow nanofiber coaxial electrospinning porous nanofiber 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. (1).
    D. Li and Y. Xia, Adv. Mater., 14, 1151 (2004).CrossRefGoogle Scholar
  2. (2).
    A. Frenot and I. S. Chroneker, Curr. Opin. Colloid Interface Sci., 8, 64 (2003).CrossRefGoogle Scholar
  3. (3).
    J. Doshi and D. H. Reneker, J. Electrost., 35, 151 (1995).CrossRefGoogle Scholar
  4. (4).
    R. H. Baughman, A. A. Zakhidov, and W. A. de Heer, Science, 297, 787 (2002).CrossRefGoogle Scholar
  5. (5).
    L. Hueso and N. Mathur, Nature, 427, 301 (2004).CrossRefGoogle Scholar
  6. (6).
    C. R. Martin and P. Kohli, Nature Rev. Drug Discov., 2, 29 (2003).CrossRefGoogle Scholar
  7. (7).
    J. T. McCann, D. Li, and Y. Xia, J. Mater. Chem., 15, 735 (2005).CrossRefGoogle Scholar
  8. (8).
    G. Larsen, R. Velarde-Ortiz, K. Minchow, A. Barrero, and I. G. Loscertales, J. Am. Chem. Soc., 125, 1154 (2003).CrossRefGoogle Scholar
  9. (9).
    M. Bognitzki, Z. Jia, A. K. Schaper, R. B. Wehrspohn, U. Gosele, and J. H. Wendorff, Adv. Mater., 12, 637 (2000).CrossRefGoogle Scholar
  10. (10).
    R. A. Caruso, J. H. Schattka, and A. Greiner, Adv. Mater., 13, 1577 (2001).CrossRefGoogle Scholar
  11. (11).
    Z. Sun, E. Zussman, A. L. Yarin, J. H. wendorff, and A. Greiner, Adv. Mater., 15, 1929 (2003).CrossRefGoogle Scholar
  12. (12).
    J. H. Yu, S. V. Fridrikh, and G. C. Rutledge, Adv. Mater., 16, 1562 (2004).CrossRefGoogle Scholar
  13. (13).
    I. G. Locertales, A. Barrero, I. Guerrero, R. Cortijo, M. Marquez, and A. M. Ganan-Calvo, Science, 295, 1154 (2002).Google Scholar
  14. (14).
    D. Li and Y. Xia, Nano Lett., 4, 933 (2004).CrossRefGoogle Scholar
  15. (15).
    J. Liu, A. Rasheed, H. Dong, W. W. Carr, M. D. Dadmun, and S. Kumar, Macromol. Chem. Phys., 209, 2390 (2008).CrossRefGoogle Scholar
  16. (16).
    H. Dong, V. Nyame, A. G. MacDiarmid, and W. E. Jones, Jr., J. Polym. Sci., Polym. Phys. Ed., 42, 3934 (2004).CrossRefGoogle Scholar
  17. (17).
    G. Kwak, G. H. Lee, S. H. Shim, and K. B. Yoon, Macromol. Rapid Commun., 29, 815 (2008).CrossRefGoogle Scholar
  18. (18).
    D. H. Reneker and I. Chun, Nanotechnology, 7, 216 (1996).CrossRefGoogle Scholar
  19. (19).
    P. Gupta, C. Elkins, T. E. Long, and G. L. Wilkes, Polymer, 46, 4799 (2005).Google Scholar
  20. (20).
    A. L. Yarin, S. Koombhongse, and D. H. Reneker, J. Appl. Phys., 90, 4836 (2001).CrossRefGoogle Scholar
  21. (21).
    Y. Z. Zhang, Z. M. Huang, X. J. Xu, C. T. Lim, and S. Ramakrishna, Chem. Mater., 16, 3406 (2004).CrossRefGoogle Scholar
  22. (22).
    S. Megelski, J. S. Stephenes, D. B. Chase, and J. F. Rabolt, Macromolecules, 35, 8456 (2002).CrossRefGoogle Scholar
  23. (23).
    C. L. Casper, J. S. Stephenes, N. G. Tassi, D. B. Chase, and J. F. Rabolt, Macromolecules, 37, 573 (2004).CrossRefGoogle Scholar
  24. (24).
    M. Srinivasarao, D. Collings, A. Phillips, and S. Patel, Science, 292, 79 (2001).CrossRefGoogle Scholar
  25. (25).
    H. Matsuyama, M. Teramoto, R. Nakatani, and T. Maki, J. Appl. Polym. Sci., 74, 171 (1999).CrossRefGoogle Scholar

Copyright information

© The Polymer Society of Korea and Springer Netherlands 2010

Authors and Affiliations

  • Ga Hyoung Lee
    • 1
  • Jun-Cheol Song
    • 1
  • Keun-Byoung Yoon
    • 1
  1. 1.Department of Polymer ScienceKyungpook National UniversityDaeguKorea

Personalised recommendations