Advertisement

Macromolecular Research

, Volume 18, Issue 3, pp 215–221 | Cite as

Electrospinning of polylactide fibers containing silver nanoparticles

  • Eun Seon Kim
  • Seong Hun KimEmail author
  • Chang Hwan Lee
Article

Abstract

Biodegradable polylactide (PLA) nanofibers containing silver nanoparticles were prepared by electrospinning. Solutions of PLA in dichloromethane/N,N-dimethylacetamide (DMAc) with different amounts of silver nitrate (AgNO3) were used to spin nanofibers. DMAc was used as a reducing agent for Ag+ ions in the PLA solution. In the dilute solution system, the intrinsic viscosity and Huggins constant of the PLA/Ag solutions decreased at AgNO3 concentrations < 6 wt% whereas they increased at 9 wt% AgNO3. On the other hand, dichloromethane/DMAc was found to be a good solvent with a similar solvating power to the Huggins constant results. The solution properties of the viscosity and electrical conductivity of the spinning solutions are strongly affected by the addition of AgNO3. The mean diameters of the PLA/Ag nanofibers containing 0, 3, 6 and 9 wt% of AgNO3 were 400.9±0.1, 352.6±0.3, 313.1±0.2 and 482.8±0.2 nm, respectively. The silver nanoparticles contributed to the formation of thinner PLA/Ag nanofibers. When the PLA nanofibers contained 6 wt% AgNO3, silver nanoparticles with an average size of 4.9 nm were distributed homogeneously in the PLA nanaofibers.

Keywords

electrospinning polylactide silver nanoparicles 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. (1).
    Z. Huang, Y. Z. Zhang, M. Kotaki, and S. Ramakrishna, Compos. Sci. Technol., 63, 2223 (2003).CrossRefGoogle Scholar
  2. (2).
    D. H. Reneker and I. Chun, Nanotechnology, 7, 216 (1996).CrossRefGoogle Scholar
  3. (3).
    J. Doshi and D. H. Reneker, J. Electrostatics, 35, 151 (1995).CrossRefGoogle Scholar
  4. (4).
    S. H. Lee, J. W. Yoon, and M. H. Suh, Macromol. Res., 10, 282 (2002).Google Scholar
  5. (5).
    K. Nakata, S. H. Kim, Y. Ohkoshi, Y. Gotoh, and M. Nagura, Sen’i Gakkaishi, 63, 307 (2007).CrossRefGoogle Scholar
  6. (6).
    X. Xu, Q. Yang, Y. Wang, H. Yu, X. Chen, and X. Jing, Eur. Polym. J., 42, 2081, (2006).CrossRefGoogle Scholar
  7. (7).
    D. Li, M. W. Frey, and A. J. Baeumner, J. Membr. Sci., 279, 354 (2006).CrossRefGoogle Scholar
  8. (8).
    E. S. Kim, C. H. Lee, and S. H. Kim, J. Appl. Polym. Sci., in press (2009).Google Scholar
  9. (9).
    G. Khang, J. M. Rhee, J. K. Jeong, J. S. Lee, M. S. Kim, S. H. Cho, and H. B. Lee, Macromol. Res., 11, 207 (2003).Google Scholar
  10. (10).
    C. Seoul, Y. T. Kim, and C. K. Baek, J. Polym. Sci. Part B: Polym. Phys., 41, 1572 (2003).CrossRefGoogle Scholar
  11. (11).
    Y. Wang, Y. Li, S. Yang, G. Zhang, D. An, C. Wang, Q. Yang, X. Chen, X. Jing, and Y. Wei, Nanotechnology, 17, 3304 (2006).CrossRefGoogle Scholar
  12. (12).
    M. M. Demir, M. A. Gulgun, Y. Z. Menceloglu, B. Erman, S. Abramchuk, E. E. Makhaeva, A. R. Khokhlov, V. G. Matveeva, and M. H. Sulman, Macromolecules, 37, 1787 (2004).CrossRefGoogle Scholar
  13. (13).
    Y. You, S. W. Lee, J. H. Youk, B. Min, S. J. Lee, and W. H. Park, Polym. Degrad. Stabil., 90, 441 (2005).CrossRefGoogle Scholar
  14. (14).
    M. Bognitzki, W. Czado, T. Frese, A. Schaper, M. Hellwig, M. Steinhart, A. Greiner, and J. H. Wendorff, Adv. Mater., 13, 70 (2001).CrossRefGoogle Scholar
  15. (15).
    X. H. Zong, K. Kim, D. F. Fang, S. F. Ran, B. S. Hsiao, and B. Chu, Polymer, 43, 4403 (2002).CrossRefGoogle Scholar
  16. (16).
    W. Lin and M. Yang, Macromol. Rapid Commun., 26, 1942 (2005).CrossRefGoogle Scholar
  17. (17).
    J. T. Park, J. H. Koh, and J. A. Seo, Macromol. Res., 17, 301 (2009).Google Scholar
  18. (18).
    F. A. Sheikh, N. Barakat, and M. A. Kanjwal, Macromol. Res., 17, 688 (2009).Google Scholar
  19. (19).
    Z. Zhang, L. Zhang, S. Wang, W. Chen, and Y. Lei, Polymer, 42, 8315 (2001).CrossRefGoogle Scholar
  20. (20).
    K. H. Hong, Polym. Eng. Sci., 47, 43 (2007).CrossRefGoogle Scholar
  21. (21).
    I. Pastoriza-Santos and L. M. Liz-Marzán, Langmuir, 15, 948 (1999).CrossRefGoogle Scholar
  22. (22).
    I. Pastoriza-Santos and L. M. Liz-Marzán, Langmuir, 18, 2888 (2002).CrossRefGoogle Scholar
  23. (23).
    W. Jin, H. K. Lee, E. H. Jeong, W. H. Park, and J. H. Youk, Macromol. Rapid Commun., 26, 1903 (2005).CrossRefGoogle Scholar
  24. (24).
    H. K. Lee, E. H. Jeong, C. K. Baek, and J. H. Youk, Mater. Lett., 59, 2977 (2005).CrossRefGoogle Scholar
  25. (25).
    W. Jin, H. J. Jeon, J. H. Hong, E. H. Jeong, and J. H. Youk, J. Korean Fiber Soc., 43, 1 (2006).Google Scholar
  26. (26).
    W. K. Son, J. H. Youk, and W. H. Park, Carbohydr. Polym., 65, 430 (2006).CrossRefGoogle Scholar
  27. (27).
    J. R. Prakash and H. C. Ottinger, J. Non-Newton Fluid Mech., 71, 245 (1997).CrossRefGoogle Scholar
  28. (28).
    M. Bercea, C. Ioan, S. Ioan, B. C. Simionescu, and C. I. Simionescu, Prog. Polym. Sci., 24, 379 (1999).CrossRefGoogle Scholar
  29. (29).
    P. D. Hong, C. M. Chou, and C. H. He, Polymer, 42, 6105 (2001).CrossRefGoogle Scholar
  30. (30).
    H. H. Winter and F. Chambon, J. Rheol., 30, 367 (1986).CrossRefGoogle Scholar
  31. (31).
    W. K. Son, J. H. Youk, T. S. Lee, and W. H. Park, Macromol. Rapid Commun., 25, 1632 (2004).CrossRefGoogle Scholar
  32. (32).
    K. Oksman, A. P. Mathew, D. Bondeson, and I. Kvien, Compos. Sci. Technol., 66, 2776 (2006).CrossRefGoogle Scholar

Copyright information

© The Polymer Society of Korea and Springer Netherlands 2010

Authors and Affiliations

  • Eun Seon Kim
    • 1
  • Seong Hun Kim
    • 1
    Email author
  • Chang Hwan Lee
    • 1
  1. 1.Department of Fiber and Polymer EngineeringHanyang UniversitySeoulKorea

Personalised recommendations