Macromolecular Research

, Volume 18, Issue 2, pp 162–169 | Cite as

PA6/MWNT nanocomposites fabricated using electrospun nanofibers containing MWNT

Articles

Abstract

The electrospinning process with an applied electric field is used to extrude submicron fibers from polymeric solutions and has been recognized as a viable method for dispersing and aligning nanoparticles into a nanofibrous polymer matrix. In this study, electrospun nanofibers containing multi-walled carbon nanotubes (MWNTs) were used as a preform to fabricate MWNT reinforced polymer nanocomposites. The electrospun nanofibers were prepared by electrospinning a solution of polyamide 6 (PA6) and multiwalled carbon nanotubes (MWNTs). Raman spectroscopy, TGA, DSC, XRD, and TEM showed that the MWNTs were well dispersed and aligned in the electrospun nanofibers. The electrospun nanofibers in mat form were then consolidated into a solid composite by a thermal pressing. The initial modulus and tensile strength of the nanocomposites were improved by the reinforcement of the MWNTs. However, their breaking strain was lowered. This shortcoming was overcome by introducing a functional group onto the MWNTs through a surface treatment. Overall, the current method (modification of MWNTs, electrospinning, and thermal fabrication) can improve the tensile properties, including initial modulus, tensile strength and breaking strain, of PA6/MWNTs nanocomposites.

Keywords

carbon nanotubes nanocomposites electrospinning nanofibers mechanical properties 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. (1).
    S. Iijima, Nature, 354, 56 (1991).CrossRefGoogle Scholar
  2. (2).
    H. S. Nalwa, Ed., Handbook of nanostructured material and nanotechnology, Academic Press, San Diego, 2000.Google Scholar
  3. (3).
    X.-L. Xie, Y.-W. Mai, and X.-P. Zhou, Mater. Sci. Eng. R, 49, 89 (2005).CrossRefGoogle Scholar
  4. (4).
    D. Qian, E. C. Dickey, R. Andrews, and T. Rantell, Appl. Phys. Lett., 76, 2868 (2000).CrossRefGoogle Scholar
  5. (5).
    J. Sandler, M. S. P. Shaffer, T. Prasse, W. Bauhofer, K. Schulte, and A. H. Windle, Polymer, 40, 5967 (1999).CrossRefGoogle Scholar
  6. (6).
    X. Gong, J. Liu, S. Baskaran, R. D. Voise, and J. S. Young, Chem. Mater., 12, 1049 (2000).CrossRefGoogle Scholar
  7. (7).
    B. Z. Tang and H. Xu, Macromolecules, 32, 2569 (1999).CrossRefGoogle Scholar
  8. (8).
    T. W. Ebbesen, P. M. Ajayan, H. Hiura, and K. Tanigaki, Nature, 367, 519 (1994).CrossRefGoogle Scholar
  9. (9).
    H. Hiura, T. W. Ebbesen, and K. Tanigaki, Adv. Mater., 7, 275 (1995).CrossRefGoogle Scholar
  10. (10).
    W. Feng, X. D. Bai, Y. Q. Lian, J. Liang, X. G. Wang, and K. Yoshino, Carbon, 41, 1551 (2003).CrossRefGoogle Scholar
  11. (11).
    Z. Jin, K. P. Pramoda, S. H. Goh, and G. Xu, Mater. Res. Bull., 37, 271 (2002).CrossRefGoogle Scholar
  12. (12).
    J. Fan, M. Wan, D. Zhu, B. Chang, Z. Pan, and S. Xie, J. Appl. Polym. Sci., 74, 2605 (1999).CrossRefGoogle Scholar
  13. (13).
    Y. Lin, B. Zhou, K. A. Shiral Fernando, P. Liu, L. F. Allard, and Y.-P. Sun, Macromolecules, 36, 7199 (2003).CrossRefGoogle Scholar
  14. (14).
    J. E. Riggs, Z. Guo, D. L. Carroll, and Y.-P. Sun, J. Am. Chem. Soc., 122, 5879 (2000).CrossRefGoogle Scholar
  15. (15).
    T. Kimura, H. Ago, M. Tobita, S. Ohshima, M. Kyotani, and M. Yumura, Adv. Mater., 14, 1380 (2002).CrossRefGoogle Scholar
  16. (16).
    B. Vigolo, A. Penicaud, C. Coulon, C. Sauder, R. Pailler, C. Journet, P. Bernier, and P. Poulin, Science, 290, 1331 (2000).CrossRefGoogle Scholar
  17. (17).
    P. Kannan, S. J. Eichhorn, and R. J. Young, Nanotechnology, 18, 235707 (2007).CrossRefGoogle Scholar
  18. (18).
    J. S. Jeong, S. Y. Jeon, T. Y. Lee, J. H. Park, J. H. Shin, P. S. Alegaonkar, A. S. Berdinsky, and J. B. Yoo, Diam. Relat. Mater., 15, 1839 (2006).CrossRefGoogle Scholar
  19. (19).
    H. Meng, G. X. Sui, P. F. Fang, and R. Yang, Polymer, 49, 610 (2008).CrossRefGoogle Scholar
  20. (20).
    G.-X. Chen, H.-S. Kim, B. H. Park, and J.-S. Yoon, Polymer, 47, 4760 (2006).CrossRefGoogle Scholar
  21. (21).
    B. S. Kim, S. H. Bae, Y. H. Park, and J. H. Kim, Macromol. Res., 15, 357 (2007).Google Scholar
  22. (22).
    I. Park, M. Park, J. Kim, H. Lee, and M. S. Lee, Macromol. Res., 15, 498 (2007).Google Scholar
  23. (23).
    M. Burghard, Surf. Sci. Rep., 58, 1 (2005).Google Scholar
  24. (24).
    T. D. Fornes and D. R. Paul, Polymer, 44, 3945 (2003).CrossRefGoogle Scholar
  25. (25).
    J. S. Stephens, D. B. Chase, and J. F. Rabolt, Macromolecules, 37, 877 (2004).CrossRefGoogle Scholar
  26. (26).
    C. Zhao, G. Hu, R. Justice, D. W. Schaefer, S. Zhang, M. Yang, and C. C. Han, Polymer, 46, 5125 (2005).CrossRefGoogle Scholar
  27. (27).
    L. Penel-Pierron, R. Séguéla, J.-M. Lefebvre, V. Miri, C. Depecker, M. Jutigny, and J. Pabiot, J. Polym. Sci. Part B: Polym. Phys., 39, 1224 (2001).CrossRefGoogle Scholar

Copyright information

© The Polymer Society of Korea and Springer Netherlands 2010

Authors and Affiliations

  1. 1.Research Institute of Advanced Materials(RIAM) and Department of Materials Science and EngineeringSeoul National UniversitySeoulKorea

Personalised recommendations