Macromolecular Research

, Volume 18, Issue 1, pp 29–34 | Cite as

Preparation and biocompatibility study of gelatin/kappa-carrageenan scaffolds

  • Youn-Mook Lim
  • Hui-Jeong Gwon
  • Jae-Hak Choi
  • Junwha Shin
  • Young-Chang Nho
  • Sung In Jeong
  • Moo Sang Chong
  • Young-Moo Lee
  • Il Keun Kwon
  • Sung Eun Kim
Articles

Abstract

Novel porous scaffolds composed of gelatin/κ-carrageenan (GC) were fabricated by freeze-drying followed by chemical cross-linking with 1-ethyl-3-(3-dimethylaminopropyl)carbodiimide (EDC). The morphology of the insoluble GC sponges was examined by field emission scanning electron microscopy (FE-SEM). The porosity of the GC sponge increased with increasing kappa-carrageenan content. Implantation of a GC sponge into the subcutaneous connective tissue of Wistar rats confirmed that the scaffold was biodegradable. Fibroblasts infiltrated into the sponge matrix, and regenerated collagen in the matrix to a level of 25% at 14 days after surgery. The C-reactive protein level in the blood samples also showed a similar result. The blood and histological results show that the GC sponges have good biocompatibility and low antigenicity indicating that they would be safe and effective tissue engineering scaffolds.

Keywords

gelatin kappa-carrageenan scaffold biocompatibility tissue engineering 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. (1).
    K. G. Birukov, V. P. Shirinsky, O. V. Stepanova, V. A. Tkachuk, A. W. A. Hahn, T. J. Resink, and V. N. Smirnov, Mol. Cell. Biochem., 144, 131 (1995).CrossRefGoogle Scholar
  2. (2).
    K. Kanda and T. Matsuda, Cell Transplant, 2, 475 (1993).Google Scholar
  3. (3).
    P. Reusch, H. Wagdy, R. Reusch, E. Wilson, and H. E. Ives, Circ. Res., 79, 1046 (1996).Google Scholar
  4. (4).
    B. E. Sumpio, A. J. Banes, W. G. Link, and G. Jr. Johnson, Arch. Surg., 123, 1233 (1988).Google Scholar
  5. (5).
    M. E. Nimni, D. Cheung, B. Strates, M. Kodama, and K. Skeikh, J. Biomed. Mat. Res., 21, 741 (1987).CrossRefGoogle Scholar
  6. (6).
    Y. S. Choi, S. R. Hong, Y. M. Lee, K. W. Song, M. H. Park, and Y. S. Nam, Biomaterials, 20, 409 (1999).CrossRefGoogle Scholar
  7. (7).
    Y. S. Choi, S. R. Hong, Y. M. Lee, K. W. Song, M. H. Park, and Y. S. Nam, J. Biomed. Mater. Res., 48, 631 (1999).CrossRefGoogle Scholar
  8. (8).
    Y. S. Choi, S. B. Lee, S. R. Hong, Y. M. Lee, K.W. Song, M. H. Park, and Y. S. Nam, J. Mater. Sci-Mater. M., 11, 1 (2001).Google Scholar
  9. (9).
    S. R. Hong, S. J. Lee, J. W. Shim, Y. S. Choi, Y. M. Lee, K. W. Song, M. H. Park, Y. S. Nam, and S. I. Lee, Biomaterials, 22, 2777 (2001).CrossRefGoogle Scholar
  10. (10).
    J. S. Mao, L. G. Zhao, Y. J. Yiu, and K. D. Yao, Biomaterials, 24, 1067 (2003).CrossRefGoogle Scholar
  11. (11).
    B. Diehl-Seifert, B. Kurelec, R. K. Zahn, A. Dorn, B. Jericevic, G. Uhlenbruck, and W. E. G. Mueller, J. Cell Sci., 79, 271 (1985).Google Scholar
  12. (12).
    B. Alberts, D. Bray, J. Lewis, M. Raff, K. Roberts, and J. D. Watson, The Molecular Biology of the Cell, Garland Publishers, 1994, pp 971–990.Google Scholar
  13. (13).
    K. Tomihata, K. Burczak, K. Shiraki, and Y. Ikada, in Polymers of Biological and Biomedical Importance, S. W. Shalaby, Y. Ikada, R. S. Langer, and J. Williams, Eds., American Chemical Society Symp Series, 1994, Vol. 540.Google Scholar
  14. (14).
    S. Meier and E. D. Hay, Dev. Biol., 38, 249 (1974).CrossRefGoogle Scholar
  15. (15).
    G. O. Gey, M. Svoelis, M. Foard, and F. B. Bang, Exp. Cell. Res., 84, 63 (1974).CrossRefGoogle Scholar
  16. (16).
    K. T. Nijenhuis, Carrageenans, Thermoreversible Networks, Springer, Berlin, 1997, pp 203–252.Google Scholar
  17. (17).
    N. P. Ziats, K. M. Miller, and J. M. Anderson, Biomaterials, 9, 5 (1988).CrossRefGoogle Scholar
  18. (18).
    E. Jablonska, J. Jablonski, and W. E. Holownink, Immunol. Lett., 70, 191 (1999).CrossRefGoogle Scholar
  19. (19).
    W. S. Tillett and T. Francis, J. Exp. Med., 52, 561 (1930).CrossRefGoogle Scholar
  20. (20).
    T. J. Abernathy and O. T. Avery, J. Exp. Med., 73, 173 (1941).CrossRefGoogle Scholar
  21. (21).
    C. M. Macleod and O. T. Avery, J. Exp. Med., 73, 183 (1941).CrossRefGoogle Scholar
  22. (22).
    V. Kolb-Bachofen, Immunobiology, 183, 133 (1991).Google Scholar
  23. (23).
    M. Lelong, M. F. Renard, and V. Giraudeaux, Clin. Chim. Acta., 288, 147 (1999).CrossRefGoogle Scholar

Copyright information

© The Polymer Society of Korea and Springer Netherlands 2010

Authors and Affiliations

  • Youn-Mook Lim
    • 1
  • Hui-Jeong Gwon
    • 1
  • Jae-Hak Choi
    • 1
  • Junwha Shin
    • 1
  • Young-Chang Nho
    • 1
  • Sung In Jeong
    • 2
  • Moo Sang Chong
    • 2
  • Young-Moo Lee
    • 2
  • Il Keun Kwon
    • 3
  • Sung Eun Kim
    • 3
  1. 1.Radiation Research Division for Industry & Environment, Advanced Radiation Technology InstituteKorea Atomic Energy Research InstituteJeollabuk-doKorea
  2. 2.School of Chemical Engineering, College of EngineeringHanyang UniversitySeoulKorea
  3. 3.Department of Oral Biology & Institute of Oral Biology, School of DentistryKyung Hee UniversitySeoulKorea

Personalised recommendations