Advertisement

Macromolecular Research

, Volume 18, Issue 1, pp 22–28 | Cite as

Modification of epoxy resin with polyether-grafted-polysiloxane and epoxy-miscible polysiloxane particles

  • Songqi Ma
  • WeiQu Liu
  • Dan Yu
  • ZhengFang Wang
Articles

Abstract

Polyether-grafted-polysiloxane (FPMS) and epoxy-miscible polysiloxane particles (EMPP) were prepared to improve the toughness of epoxy resin. The chemical structures of the products were characterized by FTIR, 1H NMR, 29Si NMR, and gel permeation chromatography (GPC). The morphology of the EMPP was analyzed by transmission electron microscopy (TEM). The thermal and mechanical properties and morphologies of the polysiloxanes modified epoxy networks were examined by differential scanning calorimetry (DSC), tensile and impact testing, and scanning electron microscopy (SEM). Microspheres were observed in the EMPP modified epoxy network, whereas irregular particles were obtained for the FPMS modified epoxy resin. The FPMS and EMPP effectively improved the tensile and impact strength of the cured epoxies, while the glass transition temperatures (T g s) were depressed slightly. Moreover, with the same content of modifiers, the EMPP-modified epoxy network exhibited higher impact strength and lower T g s than the FPMS-modified epoxy network.

Keywords

epoxy resin polysiloxanes polyether toughness microsphere miscible 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. (1).
    C. B. Bucknall and A. H. Gilbert, Polymer, 30, 213 (1989).CrossRefGoogle Scholar
  2. (2).
    M. C. Lee, T. H. Ho, and C. S. Wang, J. Appl. Polym. Sci., 62, 217 (1996).CrossRefGoogle Scholar
  3. (3).
    S. T. Lin and S. K. Huang, Eur. Polym. J., 33, 365 (1997).CrossRefGoogle Scholar
  4. (4).
    L. Ruiz-Péez, G. J. Royston, J. P. A. Fairclough, and A. J. Ryan, Polymer, 49, 4475 (2008).CrossRefGoogle Scholar
  5. (5).
    M. Gonzalez, P. Kadlec, P. Štěpánek, A. Strachota, and L. Matejka, Polymer, 45, 5533 (2004).CrossRefGoogle Scholar
  6. (6).
    P. G. Liu, J. X. Song, L. H. He, X. Q. Liang, H. Y. Ding, and Q. F. Li, Eur. Polym. J., 44, 940 (2008).CrossRefGoogle Scholar
  7. (7).
    M. Alagar, A. A. Kumar, A. A. Prabu, and A. Rajendran, Int. J. Polym. Mater., 53, 45 (2004).CrossRefGoogle Scholar
  8. (8).
    A. A. Prabu and M. Alagar, J. Macromol. Sci. Part A-Pure Appl. Chem., 42, 175 (2005).CrossRefGoogle Scholar
  9. (9).
    J. Y. Shieh, T. H. Ho, and C. S. Wang, Angew. Makromol. Chem., 224, 21 (1995).CrossRefGoogle Scholar
  10. (10).
    S. S. Lee and S. C. Kim, J. Appl. Polym. Sci., 64, 941 (1997).CrossRefGoogle Scholar
  11. (11).
    M. Jang and J. V. Crivello, J. Polym. Sci. Part A: Polym. Chem., 41, 3056 (2003).CrossRefGoogle Scholar
  12. (12).
    S. S. Hou, Y. P. Chung, C. K. Chan, and P. L. Kuo, Polymer, 41, 3263 (2000).CrossRefGoogle Scholar
  13. (13).
    W. C. Shih, C. C. M. Ma, J. C. Yang, and H. D. Chen, J. Appl. Polym. Sci., 73, 2739 (1999).CrossRefGoogle Scholar
  14. (14).
    S. T. Lin and S. K. Huang, J. Polym. Sci. Part A: Polym. Chem., 34, 1907 (1996).CrossRefGoogle Scholar
  15. (15).
    K. U. Chun-Kang and L. E. E. Yu-Der, Polymer, 48, 3 (2007).Google Scholar
  16. (16).
    L. Könczöl, W. Döll, U. Buchholz, and R. Mülhaupt, J. Appl. Polym. Sci., 54, 815 (1994).CrossRefGoogle Scholar
  17. (17).
    Q. P. Guo, F. Chen, K. Wang, and L. Chen, J. Polym. Sci. Part B: Polym. Phys., 44, 3042 (2006).CrossRefGoogle Scholar
  18. (18).
    J. L. Hedrick, I. Yilgör, G. L. Wilkes, and J. E. Mcgrath, Polym. Bull., 13, 201 (1985).CrossRefGoogle Scholar
  19. (19).
    T. Iijima, T. Tochimoto, and M. Tomoi, J. Appl. Polym. Sci., 43, 1685 (1991).CrossRefGoogle Scholar
  20. (20).
    H. H. Wang and J. C. Chen, J. Appl. Polym. Sci., 57, 671 (1995).CrossRefGoogle Scholar
  21. (21).
    C. Carfagna, L. Nicolais, E. Amendola, C. J. R. Carfagna, and A. G. Filippov, J. Appl. Polym. Sci., 44, 1465 (1992).CrossRefGoogle Scholar
  22. (22).
    T. H. Ho and C. S. Wang, Eur. Polym. J., 37, 267 (2001).CrossRefGoogle Scholar
  23. (23).
    Y. Huang, X. Sun, and W. Huang, Inst. Chem. Chinese Acad. Sci., 2001.Google Scholar
  24. (24).
    S. H. Lee, W. S. Jahng, K. H. Park, N. Kim, W. J. Joo, and D. H. Choi, Macromol. Res., 11, 431 (2003).Google Scholar
  25. (25).
    B. G. Kim, J. K. Moon, E. H. Sohn, J. C. Lee, and J. K. Yeo, Macromol. Res., 16, 36 (2008).Google Scholar
  26. (26).
    Y.-L. Liu, C.-S. Wu, Y.-S. Chiu, and W.-H. Ho, J. Polym. Sci. Part A: Polym. Chem., 41, 2354 (2003).CrossRefGoogle Scholar
  27. (27).
    S. Ritzenthaler, F. Court, L. David, E. Girard-Reydet, L. Leibler, and J. P. Pascault, Macromolecules, 35, 6245 (2002).CrossRefGoogle Scholar
  28. (28).
    F. Zhao, Q. C. Sun, D. P. Fang, and K. D. Yao, J. Appl. Polym. Sci., 76, 1683 (2000).CrossRefGoogle Scholar
  29. (29).
    Z. K. Chen, G. Yang, J. P. Yang, S. Y. Fu, L. Ye, and Y. G. Huang, Polymer, 50, 1316 (2009).CrossRefGoogle Scholar
  30. (30).
    S. Nagendiran and S. P. M. Alagar, J. Appl. Polym. Sci., 106, 1263 (2007).CrossRefGoogle Scholar

Copyright information

© The Polymer Society of Korea and Springer Netherlands 2010

Authors and Affiliations

  1. 1.Key Laboratory of Polymer Materials for Electronics, Guangzhou Institute of ChemistryChinese Academy of SciencesGuangzhouP R China
  2. 2.Graduate University of Chinese Academy of SciencesBeijingP R China

Personalised recommendations