Indian Journal of Pure and Applied Mathematics

, Volume 49, Issue 4, pp 743–763 | Cite as

On the Topology of Real Bott Manifolds

  • Raisa DsouzaEmail author


The main aim of this article is to give a necessary and sufficient condition for a real Bott manifold to admit a spin structure and further give a combinatorial characterization for the spin structure in terms of the associated acyclic digraph.

Key words

Real Bott manifolds orientability spin structure oriented null-cobordism 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Y. Chen and Y. Wang, The number of small covers over cubes and the product of at most three simplices up to equivariant cobordism, Proc. Japanese Acad., Series A, Math. Sci., 87 (2011), 95–98.MathSciNetCrossRefzbMATHGoogle Scholar
  2. 2.
    S. Choi, M. Masuda, and S. I. Oum, Classification of real Bott manifolds and acyclic digraphs, Trans. Amer. Math. Soc., 369 (2017), 2987–3011.MathSciNetCrossRefzbMATHGoogle Scholar
  3. 3.
    S. Choi, M. Masuda, and D. Y. Suh, Topological classification of generalized Bott towers, Trans. Amer. Math. Soc., 362 (2010), 1097–1112.MathSciNetCrossRefzbMATHGoogle Scholar
  4. 4.
    Y. Civan, Bott towers, crosspolytopes and torus actions, Geometriae Dedicata, 113 (2005), 55–74.MathSciNetCrossRefzbMATHGoogle Scholar
  5. 5.
    Y. Civan and N. Ray, Homotopy decompositions and K-theory of Bott towers, K-theory, 34 (2005), 1–33.MathSciNetCrossRefzbMATHGoogle Scholar
  6. 6.
    M. W. Davis and T. Januszkiewicz, Convex polytopes, Coxeter orbifolds and torus actions, Duke Math. Jour., 62 (1991), 417–451.MathSciNetCrossRefzbMATHGoogle Scholar
  7. 7.
    R. Dsouza and V. Uma, Some results on the topology of real Bott towers, arXiv preprint arXiv:1609.05630, (2016).Google Scholar
  8. 8.
    A. Gąsior, Spin-structures on real Bott manifolds, Jour. Korean Math. Soc., 54 (2017), 507–516.MathSciNetCrossRefzbMATHGoogle Scholar
  9. 9.
    M. Grossberg and Y. Karshon, Bott towers, complete integrability, and the extended character of representations, Duke Math. Jour., 76 (1994), 23–58.MathSciNetCrossRefzbMATHGoogle Scholar
  10. 10.
    F. Hirzebruch and H. Hopf, Felder von Flächenelementen in 4-dimensionalen Mannigfaltigkeiten, Mathematische Annalen, 136 (1958), 156–172.MathSciNetCrossRefzbMATHGoogle Scholar
  11. 11.
    J. Jurkiewicz, Torus embeddings, polyhedra, k*-actions and homology, Instytut Matematyczny Polskiej Akademi Nauk (Warszawa), (1985).zbMATHGoogle Scholar
  12. 12.
    Y. Kamishima and M. Masuda, Cohomological rigidity of real Bott manifolds, Algebraic & Geometric Topology, 9 (2009), 2479–2502.MathSciNetCrossRefzbMATHGoogle Scholar
  13. 13.
    J. Korbaš, Distributions, vector distributions, immersions of manifolds in Euclidean spaces, Handbook of Global Analysis, D. Krupka and D. Saunders, eds., ch. 13, (2008) 665–724.Google Scholar
  14. 14.
    H. B. Lawson and M. L. Michelsohn, Spin geometry (PMS-38), 38, Princeton university press, (2016).Google Scholar
  15. 15.
    Y. Lü, On cobordism of generalized (real) Bott manifolds, arXiv preprint arXiv:1710.00562, (2017).Google Scholar
  16. 16.
    Z. Lü and Q. Tan, Small covers and the equivariant bordism classification of 2-torus manifolds, International Math. Research Notices, (2013), 6756–6797.Google Scholar
  17. 17.
    W. Massey, On the Stiefel-Whitney classes of a manifold, Amer. Jour. Math., 82 (1960), 92–102.MathSciNetCrossRefzbMATHGoogle Scholar
  18. 18.
    M. Masuda and T. E. Panov, Semifree circle actions, Bott towers and quasitoric manifolds, Sbornik: Math., 199 (2008), 1201.MathSciNetCrossRefzbMATHGoogle Scholar
  19. 19.
    J. Milnor and J. D. Stasheff, Characteristic classes.(AM-76), 76, Princeton university press, (2016).Google Scholar
  20. 20.
    H. Nakayama and Y. Nishimura, The orientability of small covers and coloring simple polytopes, Osaka Jour. Math., 42 (2005), 243–256.MathSciNetzbMATHGoogle Scholar
  21. 21.
    A. Nazra, Diffeomorphism classes of real Bott manifolds, Tokyo Jour. Math., 34 (2011), 229–260.MathSciNetCrossRefzbMATHGoogle Scholar
  22. 22.
    V. Uma, On the fundamental group of real toric varieties, in Proc. Indian Acad. Sci. Math. Sci., 114, (2004), 15–31.MathSciNetCrossRefzbMATHGoogle Scholar
  23. 23.
    C. Wall, Determination of the cobordism ring, Ann. Math., (1960), 292–311.Google Scholar

Copyright information

© The Indian National Science Academy 2018

Authors and Affiliations

  1. 1.Department of MathematicsIIT MadrasChennaiIndia

Personalised recommendations