Advertisement

Indian Journal of Pure and Applied Mathematics

, Volume 49, Issue 4, pp 717–727 | Cite as

Exponential Stability for the Generalized Korteweg-de Vries Equation in a Finite Interval with Weak Damping

Article
  • 55 Downloads

Abstract

The aim of this paper is to consider the generalized Korteweg-de Vries equation in a finite interval with a very weak localized dissipation. We obtain the globally uniformly exponentially stability of this equation. The main difficulty in this context comes from the structure of nonlinear term and the lack of regularity.

Key words

Exponential decay stabilization Korteweg-de Vries equation 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    E. Cerpa and E. Crépeau, Rapid exponential stabilization for a linear Korteweg-de Vries equation, Discrete Contin. Dyn. Syst. Ser. B, 11 (2009), 655–668.MathSciNetCrossRefzbMATHGoogle Scholar
  2. 2.
    E. Cerpa and J. M. Coron, Rapid stabilization for a Korteweg-de Vries equation from the left Dirichlet boundary condition, IEEE Trans. on Autom. Control, 58 (2013), 1688–1695.MathSciNetCrossRefzbMATHGoogle Scholar
  3. 3.
    D. J. Korteweg and G. de Vries, On the change of form of long waves advancing in a rectangular canal, and on a new type of long stationary waves, Philos. Mag., 39 (1895), 422–443.MathSciNetCrossRefzbMATHGoogle Scholar
  4. 4.
    C. P. Massarolo, G. P. Menzala, and A. F. Pazoto, On the uniform decay for the Korteweg-de Vries equation with weak damping, Math. Methods Appl. Sci., 12 (2007), 1419–1435.MathSciNetCrossRefzbMATHGoogle Scholar
  5. 5.
    R. M. Miura, The Korteweg-de Vries equation: A survey of results, SIAM Rev., 18 (1976), 412–459.MathSciNetCrossRefzbMATHGoogle Scholar
  6. 6.
    A. F. Pazoto, Unique continuation and decay for the Korteweg-de Vries equation with localized damping, ESAIM Control Optim. Calc. Var., 11 (2005), 473–486.MathSciNetCrossRefzbMATHGoogle Scholar
  7. 7.
    G. Perla Menzala, C. F. Vasconcellos, and E. Zuazua, Stabilization of the Korteweg-de Vries equation with localized damping, Quart. Appl. Math., 60 (2002), 111–129.MathSciNetCrossRefzbMATHGoogle Scholar
  8. 8.
    L. Rosier, Exact boundary controllability for the Korteweg-de Vries equation on a bounded domain, ESAIM Control Optim. Calc. Var., 2 (1997), 33–55.MathSciNetCrossRefzbMATHGoogle Scholar
  9. 9.
    L. Rosier and B-Y Zhang, Global stabilization of the generalized Korteweg-de Vries equation posed on a finite domain, SIAM Journal on Control and Optimization, 45(3) (2006), 927–956.MathSciNetCrossRefzbMATHGoogle Scholar
  10. 10.
    D. L. Russell and B.-Y. Zhang, Smoothing properties of solutions of the Korteweg-de Vries equation on a periodic domain with point dissipation, J. Math. Anal. Appl., 190 (1995), 449–488.MathSciNetCrossRefzbMATHGoogle Scholar
  11. 11.
    S. M. Sun, The Korteweg-de Vries equation on a periodic domain with singular-point dissipation, SIAM J. Control Optim., 34 (1996), 892–912.MathSciNetCrossRefzbMATHGoogle Scholar

Copyright information

© The Indian National Science Academy 2018

Authors and Affiliations

  1. 1.School of Mathematics and Statistics, Center for Mathematics and Interdisciplinary SciencesNortheast Normal UniversityChangchunP. R. China

Personalised recommendations