Advertisement

Indian Journal of Pure and Applied Mathematics

, Volume 49, Issue 4, pp 663–669 | Cite as

Construction of Symmetric and Asymmetric Orthogonal Arrays of Strength t from Orthogonal Partition

  • Shanqi Pang
  • Wenju Xu
  • Guangzhou ChenEmail author
  • Ying Wang
Article
  • 29 Downloads

Abstract

By using orthogonal partition, a general method to construct symmetric and asymmetric orthogonal arrays of strength t is proposed. And the orthogonal arrays constructed by the method are new.

Key words

Symmetric and asymmetric orthogonal arrays of strength t orthogonal partition Kronecker product 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    A. E. Brouwer, A. M. Cohen, and M. V. M. Nguyen, Orthogonal arrays of strength 3 and small run sizes, J. Statist. Plann. Inference, 136 (2006), 3268–3280.MathSciNetCrossRefzbMATHGoogle Scholar
  2. 2.
    G. Z. Chen, L. J. Ji, and J. G. Lei, The existence of mixed orthogonal arrays with four and five factors of strength two, J. Combin. Des., 22 (2014), 323–342.MathSciNetCrossRefzbMATHGoogle Scholar
  3. 3.
    J. Du, Q. Y. Wen, J. Zhang, and X. Liao, New construction of symmetric orthogonal arrays of strength t, IEICE Trans. Fundamentals, E96-A, 9 (2013), 1901–1904.CrossRefGoogle Scholar
  4. 4.
    A. S. Hedayat, N. J. A. Sloane, and J. Stufken, Orthogonal arrays: Theory and applications, Springer, New York (1999).CrossRefzbMATHGoogle Scholar
  5. 5.
    L. J. Ji and J. X. Yin, Constructions of new orthogonal arrays and covering arrays of strength three, J. Combin. Theory, Ser. A, 117 (2010), 236–247.MathSciNetCrossRefzbMATHGoogle Scholar
  6. 6.
    M. V. M. Nguyen, Some new constructions of strength 3 mixed orthogonal arrays, J. Statist. Plann. Inference, 138 (2008), 220–233.MathSciNetCrossRefzbMATHGoogle Scholar
  7. 7.
    S. Q. Pang, The methods of construction and applications of orthogonal arrays, Publishing House of University of Electronic Science and Technology, Chengdu (2004).Google Scholar
  8. 8.
    S. Q. Pang, Y. Wang, J. Du, and W. J. Xu, Iterative constructions of orthogonal arrays of strength t and orthogonal partitions, IEICE Trans. Fundamentals, E100-A, 1 (2017), 308–311.CrossRefGoogle Scholar
  9. 9.
    C.R. Rao, Some combinatorial problems of arrays and applications to design of experiments, Srivastava, J.N. (Ed.), A survey of combinatorial theory, North-Holland, Amsterdam, (1973), 349–359.CrossRefGoogle Scholar
  10. 10.
    C. Y. Suen and A. Dey, Construction of asymmetric orthogonal arrays through finite geometries, J. Statist. Plann. Inference, 115 (2003), 623–635.MathSciNetCrossRefzbMATHGoogle Scholar
  11. 11.
    C. Y. Suen, A. Das, and A. Dey, On the construction of asymmetric orthogonal arrays, Statist. Sinica., 11 (2001), 241–260.MathSciNetzbMATHGoogle Scholar
  12. 12.
    E. D. Schoen, P. T. Eendebak, and M. V. M. Nguyen, Complete enumeration of pure-level and mixedlevel orthogonal arrays, J. Combin. Des., 18 (2010), 123–140.MathSciNetCrossRefzbMATHGoogle Scholar
  13. 13.
    C. F. J. Wu, R. Zhang, and R. Wang, Construction of asymmetrical orthogonal arrays of the type OA(s k, s m(s r1 )n1 · · · (s rt )nt), Statist. Sinica., 2 (1992), 203–219.MathSciNetGoogle Scholar
  14. 14.
    Z. X. Yang, The construction of orthogonal arrays, Publishing House of Shandong, Jinan (1978).Google Scholar
  15. 15.
    J. X. Yin, J. M. Wang, L. J. Ji, and Y. Li, On the existence of orthogonal arrays OA(3, 5, 4n + 2). J. Combin. Theory, Ser. A, 118 (2011), 270–276.MathSciNetCrossRefzbMATHGoogle Scholar
  16. 16.
    T. F. Zhang, Q. Deng, and Aloke Dey, Construction of asymmetric orthogonal arrays of strength three via a replacement method, J. Combin. Des., 25 (2017), 339–348.MathSciNetCrossRefzbMATHGoogle Scholar
  17. 17.
    T. F. Zhang, Y. Y. Zong, and Aloke Dey, On the construction of asymmetric orthogonal arrays, J. Statist. Plann. Inference, 170 (2016), 77–82.MathSciNetCrossRefzbMATHGoogle Scholar

Copyright information

© The Indian National Science Academy 2018

Authors and Affiliations

  • Shanqi Pang
    • 1
  • Wenju Xu
    • 1
  • Guangzhou Chen
    • 1
    Email author
  • Ying Wang
    • 1
  1. 1.School of Mathematics and Information ScienceHenan Normal UniversityXinxiangChina

Personalised recommendations