Advertisement

Indian Journal of Pure and Applied Mathematics

, Volume 49, Issue 4, pp 651–661 | Cite as

Contact Points and Schatten Class of Composition Operators

  • Z. BendaoudEmail author
  • F. Korrichi
  • L. Merghni
  • A. Yagoub
Article
  • 61 Downloads

Abstract

We study the composition operators on the Dirichlet spaces belonging to Schatten class and the link with the size of contact points of its symbol with the unit circle.

Key words

Generalized Nevanlinna counting function Dirichlet spaces composition operators Schatten class level set 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    H. Benazzouz, O. El-Fallah, K. Kellay, and H. Mahzouli, Contact points and Schatten composition operators, Math. Z., 279(1-2) (2015), 407–422.MathSciNetCrossRefzbMATHGoogle Scholar
  2. 2.
    Z. Bendaoud, F. Korrichi, L. Merghni, and A. Yagoub, Estimates of generalized Nevanlinna counting function and applications to composition operators, Extracta Math., 30(2) (2015), 221–234.MathSciNetzbMATHGoogle Scholar
  3. 3.
    O. El-Fallah, K. Kellay, and T. Ransford, Cantor sets and cyclicity in weighted Dirichlet spaces, J. Math. Anal. Appl., 372(2) (2010), 565–573.MathSciNetCrossRefzbMATHGoogle Scholar
  4. 4.
    O. El-Fallah, K. Kellay, M. Shabankhah, and H. Youssfi, Level sets and composition operators on the Dirichlet space, J. Funct. Anal., 260 (2011), 1721–1733.MathSciNetCrossRefzbMATHGoogle Scholar
  5. 5.
    O. El-Fallah, K. Kellay, J. Mashreghi, and T. Ransford, A primer on the Dirichlet space, Cambridge Tracts in Mathematics, Cambridge University Press, Cambridge, 2014.zbMATHGoogle Scholar
  6. 6.
    O. El-Fallah, M. El Ibbaoui, and H. Naqos, Composition operators with univalent symbol in Schatten classes, J. Funct. Anal., 266(3) (2014), 1547–1564.MathSciNetCrossRefzbMATHGoogle Scholar
  7. 7.
    K. Kellay and P. Lefèvre, Compact composition operators on weighted Hilbert spaces of analytic functions, J. Math. Anal. Appl., 386 (2012), 718–727.MathSciNetCrossRefzbMATHGoogle Scholar
  8. 8.
    H. O. Kim, Averages of Nevanlinna counting functions of holomorphic self-maps of the unit disk, Hokkaido Math. J., 33(3) (2004), 697–706.MathSciNetCrossRefzbMATHGoogle Scholar
  9. 9.
    P. Lefèvre, D. Li, H. Queffélec, and L. Rodriguez-Piazza, Compact composition operators on the Dirichlet space and capacity of sets of contact points, J. Funct. Anal., 264(4) (2013), 895–919.MathSciNetCrossRefzbMATHGoogle Scholar
  10. 10.
    P. Lefèvre, D. Li, H. Queffélec, and L. Rodriguez-Piazza, Some examples of compact composition operators on H 2, J. Funct. Anal., 255(11) (2008), 3098–3124.MathSciNetCrossRefzbMATHGoogle Scholar
  11. 11.
    P. Lefèvre, D. Li, H. Queffélec, and L. Rodriguez-Piazza, Nevanlinna counting function and Carleson function of analytic maps, Math. Ann., 351 (2011), 305–326.MathSciNetCrossRefzbMATHGoogle Scholar
  12. 12.
    D. Luecking, Trace ideal criteria for Toeplitz operators, J. Funct. Anal., 73 (1987), 345–368.MathSciNetCrossRefzbMATHGoogle Scholar
  13. 13.
    D. Luecking and K. Zhu, Composition operators belonging to the Schatten ideals, Amer. J. Math., 114(5) (1992), 1127–1145.MathSciNetCrossRefzbMATHGoogle Scholar
  14. 14.
    J. Pau and P. A. Pérez, Composition operators acting on weighted Dirichlet spaces, J. Math. Anal. Appl., 401(2) (2013), 682–694.MathSciNetCrossRefzbMATHGoogle Scholar
  15. 15.
    J. H. Shapiro, The essential norm of a composition operator, Annals of Math., 125 (1987), 375–404.MathSciNetCrossRefzbMATHGoogle Scholar
  16. 16.
    J. H. Shapiro, Composition operators and classical function theory, Springer Verlag, New York 1993.CrossRefzbMATHGoogle Scholar
  17. 17.
    K. Zhu, Operator theory in function spaces. Monographs and textbooks in pure and applied mathematics, 139, Marcel Dekker, Inc (1990).Google Scholar

Copyright information

© The Indian National Science Academy 2018

Authors and Affiliations

  • Z. Bendaoud
    • 1
    Email author
  • F. Korrichi
    • 1
  • L. Merghni
    • 2
  • A. Yagoub
    • 3
  1. 1.Laboratoire de Mathématiques Pures Et AppliquésUniversité de Amar Telidji LaghouatLaghouatAlgérie
  2. 2.Aix Marseille Université, CNRS, Centrale Marseille, I2MMarseilleFrance
  3. 3.Université de M. Khider, BiskraBiskraAlgérie

Personalised recommendations