Indian Journal of Pure and Applied Mathematics

, Volume 49, Issue 4, pp 591–600 | Cite as

r-Dynamic Chromatic Number of Some Line Graphs

  • Hanna FurmańczykEmail author
  • J. Vernold Vivin
  • N. Mohanapriya


An r-dynamic coloring of a graph G is a proper coloring c of the vertices such that |c(N(v))| ≥ min {r, deg(v)}, for each vV (G). The r-dynamic chromatic number of a graph G is the smallest k such that G admits an r-dynamic coloring with k colors. In this paper, we obtain the r-dynamic chromatic number of the line graph of helm graphs Hn for all r between minimum and maximum degree of Hn. Moreover, our proofs are constructive, what means that we give also polynomial time algorithms for the appropriate coloring. Finally, as the first, we define an equivalent model for edge coloring.

Key words

r-dynamic coloring conditional coloring line graph helm graph 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    A. Ahadi, S. Akbari, A. Dehghana, and M. Ghanbari, On the difference between chromatic number and dynamic chromatic number of graphs, Discrete Math., 312 (2012), 2579–2583.MathSciNetCrossRefzbMATHGoogle Scholar
  2. 2.
    S. Akbari, M. Ghanbari, and S. Jahanbakam, On the dynamic chromatic number of graphs, in: Combinatorics and Graphs, in: Contemp. Math., (Amer. Math. Soc.), 531 (2010), 11–18.CrossRefGoogle Scholar
  3. 3.
    S. Akbari, M. Ghanbari, and S. Jahanbekam, On the list dynamic coloring of graphs, Discrete Appl. Math., 157 (2009), 3005–3007.MathSciNetCrossRefzbMATHGoogle Scholar
  4. 4.
    M. Alishahi, Dynamic chromatic number of regular graphs, Discrete Appl. Math., 160 (2012), 2098–2103.MathSciNetCrossRefzbMATHGoogle Scholar
  5. 5.
    A. Dehghan and A. Ahadi, Upper bounds for the 2-hued chromatic number of graphs in terms of the independence number, Disc. Appl. Math., 160(15) (2012), 2142–2146.MathSciNetCrossRefzbMATHGoogle Scholar
  6. 6.
    F. Harary, Graph theory, Narosa Publishing home, New Delhi (1969).CrossRefzbMATHGoogle Scholar
  7. 7.
    S. Jahanbekam, J. Kim, O. Suil, and Douglas B. West, On r-dynamic coloring of graphs, Disc. Appl. Math., 206 (2016), 65–72.MathSciNetCrossRefzbMATHGoogle Scholar
  8. 8.
    H. J. Lai, B. Montgomery, and H. Poon, Upper bounds of dynamic chromatic number, Ars Combin., 68 (2003), 193–201.MathSciNetzbMATHGoogle Scholar
  9. 9.
    P. G. H. Lehot, An optimal algorithm to detect a line graph and output its root graph, J. ACM, 21 (1974), 569–575.MathSciNetCrossRefzbMATHGoogle Scholar
  10. 10.
    X. Li and W. Zhou, The 2nd-order conditional 3-coloring of claw-free graphs, Theoret. Comput. Sci., 396 (2008), 151–157.MathSciNetCrossRefzbMATHGoogle Scholar
  11. 11.
    X. Li, X. Yao, W. Zhou, and H. Broersma, Complexity of conditional colorability of graphs, Appl. Math. Lett., 22 (2009), 320–324.MathSciNetCrossRefzbMATHGoogle Scholar
  12. 12.
    B. Montgomery, Dynamic coloring of graphs, ProQuest LLC, Ann Arbor, MI, (2001), Ph.D Thesis, West Virginia University.Google Scholar
  13. 13.
    A. Taherkhani, r-dynamic chromatic number of graphs, Disc. Appl. Math., 201 (2016), 222–227.MathSciNetCrossRefzbMATHGoogle Scholar

Copyright information

© The Indian National Science Academy 2018

Authors and Affiliations

  • Hanna Furmańczyk
    • 1
    Email author
  • J. Vernold Vivin
    • 2
  • N. Mohanapriya
    • 3
  1. 1.Faculty of Mathematics, Physics and Informatics, Institute of InformaticsUniversity of Gdańsk, Wita StwoszaGdańskPoland
  2. 2.Department of MathematicsUniversity College of Engineering Nagercoil, (Anna University Constituent College)Konam, NagercoilIndia
  3. 3.Department of MathematicsKongunadu Arts and Science CollegeCoimbatoreIndia

Personalised recommendations