Indian Journal of Pure and Applied Mathematics

, Volume 46, Issue 4, pp 517–538 | Cite as

Fermionic Meixner classes, Lie algebras and quadratic Hamiltonians

Article

Abstract

We introduce the quadratic Fermi algebra, which is a Lie algebra, and calculate the vacuum distributions of the associated Hamiltonians. In order to emphasize the difference with the Bose case, we apply a modification of the method used in the above calculation to obtain a simple and straightforward classification of the 1-dimensional Meixner laws in terms of homogeneous quadratic expressions in the Bose creation and annihilation operators. There is a huge literature of the Meixner laws but this, purely quantum probabilistic, derivation seems to be new. Finally we briefly discuss the possible multidimensional extensions of the above results.

Keywords

Meixner probability distributions Lie algebra quantum Fermi and Bose hamiltonians 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    L. Accardi, I. Ya. Aref’eva and I. V. Volovich, Non isomorphism of the Bose and Fermi realization of sl(2,R). in preparation (2014).Google Scholar
  2. 2.
    L. Accardi, H.-H. Kuo and A. Stan, Moments and commutators of probability measures, Infinite Dimensional Analysis, Quantum Probability and Related Topics, Quantum Probability Communications, 10 (2007) 591–612.MATHMathSciNetGoogle Scholar
  3. 3.
    L. Accardi, A. Boukas and U. Franz, Renormalized powers of quantum white noise, IDA-QP (Infinite Dimensional Anal. Quantum Probab. Related Topics), 9(1) (2006), 129–147, MR2214505, DOI: 10.1142/S0219025706002263 Preprint Volterra n. 597 (2006).MATHMathSciNetCrossRefGoogle Scholar
  4. 4.
    L. Accardi and Andreas Boukas, Higher Powers of q-Deformed White Noise, Methods of Functional Analysis and Topology, 12(3) (2006), 205–219.MathSciNetGoogle Scholar
  5. 5.
    Luigi Accardi and Andreas Boukas, White noise calculus and stochastic calculus, in: Stochastic Analysis: Classical and Quantum, T. Hida, K. Saito (eds.) World Scientific (2005), 260-300. Proceedings International Conference on Stochastic analysis: classical and quantum, Perspectives of white noise theory, Meijo University, Nagoya, 1-5 November 2004, Preprint Volterra n. 579 (2005).Google Scholar
  6. 6.
    L. Accardi, U. Franz and M. Skeide, Renormalized squares of white noise and other non-Gaussian noises as Levy processes on real Lie algebras, Comm. Math. Phys., 228 (2002), 123–150. Preprint Volterra, N. 423 (2000).MATHMathSciNetCrossRefGoogle Scholar
  7. 7.
    L. Accardi, Y. G. Lu and I. V. Volovich, White noise approach to classical and quantum stochastic calculi, Lecture Notes of the Volterra—CIRM International School with the same title, Trento, Italy, 1999, Volterra Preprint N. 375 July (1999).Google Scholar
  8. 8.
    L. Accardi, M. Schurmann and W. vonWaldenfels, Quantum independent increment processes on superalgebras, Math. ZeitSchr., 198(4) (1988), 451–477. Preprint, Heidelberg, Stochastische Mathematische Modelle, January (1987).MATHMathSciNetCrossRefGoogle Scholar
  9. 9.
    F. A. Berezin, The Method of Second Quantization, Pure Appl. Phys., 24, Academic Press, New York, 1966.Google Scholar
  10. 10.
    K. O. Friedrichs, Mathematical aspects of the quantum theory of fields, Commu Pure Appl. Math., 4 (1951), 161–224, 5(1-56) (1952), 349-411, 6(1953), 1-72, (Collectively reissued: Interscience, New York, 1953).MathSciNetCrossRefGoogle Scholar
  11. 11.
    I. S. Gradshteyn and I. M. Ryzhik, Table of Integrals, Series, and Products, Seventh Edition Hardcover by Alan Jeffrey (Editor), Daniel Zwillinger (Editor), Academic Press (2007).Google Scholar
  12. 12.
    B. Grigelionis, Generalized z-distributions and related stochastic processes, Lithuanian Math. J., 41 (2001), 303–319.MathSciNetCrossRefGoogle Scholar
  13. 13.
    B. Grigelionis, Processes of Meixner type, Lithuanian Math. J., 39 (1999), 33–41.MATHMathSciNetCrossRefGoogle Scholar
  14. 14.
    J. Meixner, Orthogonal Polynomsysteme mit einer besonderen gestalt der erzeugenden funktion, (Orthogonal polynomial systems with a generating function of a special form), J. London Math. Soc., 9 (1934), 6–13 (Zbl. 7, 307).MathSciNetCrossRefGoogle Scholar
  15. 15.
    K. R. Parthasarathy and K. Schmidt, Positive definite kernels continuous tensor products and central limit theorems of probability theory, Springer Lecture Notes in Mathematics no. 272 (1972).MATHGoogle Scholar
  16. 16.
    M. Schürmann, White noise on bialgebras, Springer LNM 1544 (1993).MATHGoogle Scholar
  17. 17.
    P. Śniady, Quadratic bosonic and free white noises, Commun. Math. Phys., 211(3) (2000), 615–628, Preprint (1999).MATHCrossRefGoogle Scholar
  18. 18.
    Gabriela Popa and Aurel I. Stan, Two-dimensional Meixner random vectors and their semi-quantum operators, preprint November 2014.Google Scholar
  19. 19.
    J. Schwinger, U.S. Atomic Energy Commission Report NYO-3071, 1952 or D. Mattis, The Theory of Magnetism, Harper and Row, (1982).Google Scholar
  20. 20.
    R. Anishetty, M. Mathur and I. Raychowdhury, Irreducible SU(3) Schwinger Bosons, arXiv:0901.0644.–A Wolfram Web Resource. http://mathworld.wolfram.com/ GammaDistribution.html.Google Scholar
  21. 22.
    http://mathworld.wolfram.com/NegativeBinomialDistribution.html.Google Scholar

Copyright information

© The Indian National Science Academy 2015

Authors and Affiliations

  • L. Accardi
    • 1
  • I. Ya. Aref’eva
    • 2
  • I. V. Volovich
    • 2
  1. 1.Centro Vito VolterraUniversità di Roma “Tor Vergata”RomaItaly
  2. 2.Steklov Mathematical InstituteMoscowRussia

Personalised recommendations