Advertisement

Indian Journal of Pure and Applied Mathematics

, Volume 45, Issue 5, pp 583–632 | Cite as

On the greatest prime factor of ab + 1

  • Étienne FouvryEmail author
Article
  • 115 Downloads

Abstract

We improve some results on the size of the greatest prime factor of the integers of the form ab + 1 where a and b belong to some general given finite sequences A and B with rather large density.

Key words

Greatest prime factor primes in arithmetic progressions 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    E. Bombieri, On the large sieve, Mathematika 12: 201–225, 1965.CrossRefzbMATHMathSciNetGoogle Scholar
  2. [2]
    E Bombieri, Le Grand Crible Dans La Théorie Analytique Des Nombres (Seconde édition). Astérisque, vol. 18, S.M.F., 1987.Google Scholar
  3. [3]
    E. Bombieri, J.B. Friedlander and H. Iwaniec, Primes in arithmetic progressions to large moduli, Acta Math. 156: 203–251, 1986.CrossRefzbMATHMathSciNetGoogle Scholar
  4. [4]
    E. Bombieri, J.B. Friedlander and H. Iwaniec, Primes in arithmetic progressions to large moduli. II, Math. Annalen 277: 361–393, 1987.CrossRefzbMATHMathSciNetGoogle Scholar
  5. [5]
    E. Bombieri, J.B. Friedlander and H. Iwaniec, Primes in arithmetic progressions to large moduli. III, J. of the Amer. Math. Soc. 2: 215–224, 1989.CrossRefzbMATHMathSciNetGoogle Scholar
  6. [6]
    J-M. Deshouillers and H. Iwaniec, Kloosterman sums and Fourier coefficients of cusp forms, Inv. math. 70: 219–288, 1982.CrossRefzbMATHMathSciNetGoogle Scholar
  7. [7]
    P.D.T.A. Elliott and H. Halberstam, A conjecture in prime number theory, Symp. Math. 4: 59–72, 1968–69.Google Scholar
  8. [8]
    K. Ford, The distribution of integers with a divisor in a given interval, Ann. of Math. (2) 168: 367–433, 2008.CrossRefzbMATHMathSciNetGoogle Scholar
  9. [9]
    É. Fouvry, Répartition des suites dans les progressions arithmétiques. Résultats du type Bombieri-Vinogradov avec exposant supérieur à 1/2, Thèse de l’Université de Bordeaux I, 1981.Google Scholar
  10. [10]
    É. Fouvry, Répartition des suites dans les progressions arithmétiques, Acta Arith. 41: 359–382, 1982.zbMATHMathSciNetGoogle Scholar
  11. [11]
    É. Fouvry, Autour du théorème de Bombieri-Vinogradov, Acta Math. 152: 219–244, 1984.CrossRefzbMATHMathSciNetGoogle Scholar
  12. [12]
    É. Fouvry, Sur le problème des diviseurs de Titchmarsh, J. Reine Angew. Math., 357: 51–76, 1985.zbMATHMathSciNetGoogle Scholar
  13. [13]
    É. Fouvry, Autour du Théorème de Bombieri-Vinogradov.II, Ann. Scient. École Norm. Sup. (4) 20: 617–640, 1987.zbMATHMathSciNetGoogle Scholar
  14. [14]
    É. Fouvry and H. Iwaniec, On a theorem of Bombieri-Vinogradov type, Mathematika 27: 135–152, 1980.CrossRefzbMATHMathSciNetGoogle Scholar
  15. [15]
    É. Fouvry and H. Iwaniec, Primes in arithmetic progressions, Acta Arith. 42: 197–218, 1983.zbMATHMathSciNetGoogle Scholar
  16. [16]
    R.R. Hall and G. Tenenbaum, Divisors. Cambridge University Press, vol. 90, Cambridge, 1988.Google Scholar
  17. [17]
    K.-H. Indlekofer and N.M. Timofeev, Divisors of shifted primes, Pub. Math. Debrecen, 60: 307–345, 2002.zbMATHMathSciNetGoogle Scholar
  18. [18]
    H. Iwaniec and E. Kowalski, Analytic Number Theory, Colloquium Publications, 53, AMS, 2004.Google Scholar
  19. [19]
    D. Koukoulopoulos, Divisors of shifted primes, Int. Math. Res. Not. IMRN 2010, no. 24, 4585–4627.MathSciNetGoogle Scholar
  20. [20]
    Ju.V. Linnik, The Dispersion Method In Binary Additive Problems, Translation of Mathematical Monographs, 4, AMS, 1963.Google Scholar
  21. [21]
    K. Matomäki, On the greatest prime factor of ab + 1, Acta Math. Hungar. 124: 115–123, 2009.CrossRefzbMATHMathSciNetGoogle Scholar
  22. [22]
    M. Nair, Multiplicative functions of polynomial values in short intervals, Acta Arith. 62: 257–269, 1992.zbMATHMathSciNetGoogle Scholar
  23. [23]
    M. Nair and G. Tenenbaum, Short sums of certain arithmetic functions, Acta Math. 180: 119–144, 1998.CrossRefzbMATHMathSciNetGoogle Scholar
  24. [24]
    A. Sárközy and C.L. Stewart, On prime factors of integers of the form ab+1, Pub. Math. Debrecen, 56: 559–573, 2000.zbMATHGoogle Scholar
  25. [25]
    P. Shiu, A Brun-Titchmarsh theorem for multiplicative functions, J. Reine Angew. Math., 313: 161–170, 1980.zbMATHMathSciNetGoogle Scholar
  26. [26]
    C.L. Stewart, On the greatest prime factor of integers of the form ab + 1 Period. Math. Hungar, 43: 81–91, 2001.CrossRefzbMATHGoogle Scholar
  27. [27]
    C.L. Stewart, On prime factors of integers which are sums or shifted products, Anatomy of integers, (Ed. J.-M. de Koninck, A. Granville, F. Luca), CRM Proceedings & Lecture Notes A.M.S., vol. 46: 275–287, 2008.Google Scholar
  28. [28]
    G. Tenenbaum, Introduction à la théorie analytique et probabiliste des nombres. Cours Spécialisés, S.M.F., vol. 1, 1995.Google Scholar
  29. [29]
    A.I. Vinogradov, On the density hypothesis for Dirichlet L-series, Izv. Akad. Nauk. SSSR ser. Mat. 29: 903–934, 1965; correction ibid. 30, 719-720, 1966.zbMATHMathSciNetGoogle Scholar
  30. [30]
    Y. Zhang, Bounded gaps between primes. Ann. of Math. (2) 179, no. 3, 1121–1174, 2014.CrossRefzbMATHMathSciNetGoogle Scholar

Copyright information

© The Indian National Science Academy 2014

Authors and Affiliations

  1. 1.Laboratoire de Mathématiques d’Orsay, CNRSUniv. Paris SudOrsay CedexFrance

Personalised recommendations