Indian Journal of Pure and Applied Mathematics

, Volume 44, Issue 5, pp 711–725 | Cite as

On equality of central and class preserving automorphisms of finite p-groups

Article

Abstract

Let G be a finite non-abelian p-group, where p is a prime. Let Autc(G) and Autz(G) respectively denote the group of all class preserving and central automorphisms of G. We give a necessary and sufficient condition for G such that Autc(G) = Autz(G) and classify all finite non-abelian p-groups G with elementary abelian or cyclic center such that Autc(G) = Autz(G). We also characterize all finite p-groups G of order ≤ p7 such that Autz(G) = Autz(G) and complete the classification of all finite p-groups of order ≤ p5 for which there exist non-inner class preserving automorphisms.

Key words

Class preserving automorphism central automorphism camina pair 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    J. E. Adney and T. Yen, Automorphisms of a p-group, Illinois J. Math., 9 (1965), 137–143.MathSciNetMATHGoogle Scholar
  2. 2.
    M. S. Attar, On central automorphisms that fix the centre elementwise, Arch. Math., 89 (2007), 296–297.MathSciNetCrossRefMATHGoogle Scholar
  3. 3.
    Y. Berkovich, Groups of Prime Power Order Volume 1, (Walter de Gruyter, Berlin, 2008).CrossRefGoogle Scholar
  4. 4.
    W. Burnside, Theory of groups of finite order, 2nd Ed. Dover Publication, Inc., 1955. Reprint of the 2nd edition (Cambridge, 1911).MATHGoogle Scholar
  5. 5.
    M. J. Curran, Finite groups with central automorphism group of minimal order, Math. Proc. Royal Irish Acad., 104A(2) (2004), 223–229.MathSciNetCrossRefGoogle Scholar
  6. 6.
    M. J. Curran and D. J. McCaughan, Central automorphisms that are almost inner, Comm. Algebra, 29 (2001), 2081–2087.MathSciNetCrossRefMATHGoogle Scholar
  7. 7.
    D. Gumber and M. Sharma, On central automorphisms of finite p-groups, Comm. Algebra, 41 (2013), 1117–1122.MathSciNetCrossRefMATHGoogle Scholar
  8. 8.
    M. Hall Jr. and J. K. Senior, The groups of order 2n (n ≤ 6) (Macmillan).Google Scholar
  9. 9.
    M. Hertweck and E. Jespers, Class-preserving automorphisms and normalizer property for Blackburn groups, J. Group Theory, 12 (2009), 157–169.MathSciNetMATHGoogle Scholar
  10. 10.
    S. H. Jafari, Central automorphisms groups fixing the center element-wise, Int. Electron. J. algebra, 9 (2011), 167–170.MathSciNetMATHGoogle Scholar
  11. 11.
    R. James, The groups of order p 6 (p an odd prime), Math. Comp., 34 (1980), 613–637.MathSciNetMATHGoogle Scholar
  12. 12.
    M. Kumar and L. R. Vermani, Hasse principle for extraspecial p-groups, Proc. Japan Acad., 76, Sen A, No.8 (2000), 123–125.MathSciNetCrossRefMATHGoogle Scholar
  13. 13.
    M. Kumar and L. R. Vermani, Hasse principle for the groups of order p 4, Proc. Japan Acad., 77, Ser. A, No. 6 (2001), 95–98.MathSciNetCrossRefMATHGoogle Scholar
  14. 14.
    I. D. Macdonald, Some p-groups of Frobenius and extra-special type, Israel J. Math., 40 (1981), 350–364.MathSciNetCrossRefMATHGoogle Scholar
  15. 15.
    M. Morigi, On the minimal number of generators of finite non-abelian p-groups having an abelian automorphism group, Comm. Algebra, 23(6) (1995), 2045–2065.MathSciNetCrossRefMATHGoogle Scholar
  16. 16.
    T. W. Sag and J. W. Wamsley, Minimal presentations for groups of order 2n, n ≤ 6, J. Aust. Math. Soc, 15 (1973), 461–469.MathSciNetCrossRefMATHGoogle Scholar
  17. 17.
    M. K. Yadav, On automorphisms of some finite p-groups, Proc. Indian Acad. Sci. (Math Sci.), 118(1) (2008), 1–11.MathSciNetCrossRefMATHGoogle Scholar
  18. 18.
    M. K. Yadav, On central automorphisms fixing the center element-wise, Comm. Algebra, 37 (2009), 4325–4331.MathSciNetCrossRefMATHGoogle Scholar
  19. 19.
    M. K. Yadav, Class preserving automorphisms of finite p-groups-A Survey, Groups St. Andrews, IMS Lecture Note Series 388, Vol. 2 (2011), 569–579.MathSciNetGoogle Scholar

Copyright information

© The Indian National Science Academy 2013

Authors and Affiliations

  1. 1.School of Mathematics and Computer ApplicationsThapar UniversityPatialaIndia

Personalised recommendations